

F-789SGA PERHITUNGAN ILMIAH PENGGUNA INSTRUKSI

BAHASA INDONESIA

Daftar ISi

Tampilan	HAL.2
Memulai Menghidupkan Memotikan	
Pengaturan Kontras Tampilan	HAL.3
Pemilihan Mode	HAL 3
Menu Fungsi Aplikasi (Apps Kev).	HAL.4
Menu Set-up Kalkulator	HAL.5
Sebelum Menggunakan Kalkulator	HAL.7
Memasukkan Ungkapan dan Nilai	
Kapasitas Input	HAL.8
Mengeuit Input Memasukkan dan Tampilan Result Dalam Mode Matematika	ΗΔΙ 10
Rentang Input dan Pesan Galat	
Presisi Kalkulasi, Rentang Input	HAL.10
Urutan Operasi	HAL.14
Tumpukan Kalkulasi	HAL.15
Pesan Galat dan lokator Galat	HAL.15
Kalkulasi Dasar	HAL 17
Kalkulasi Memori	ΗΔΙ 17
Kalkulasi Pecahan	HAL 19
Pertukaran Nilai Tampilan	.HAL.20
Kalkulasi Persentase	HAL.21
Kalkulasi Derajat-Menit-Detik	HAL.21
Ulangan & Pernyataan-rangkap	HAL.22
Kalkulasi Nilai Konstanta	HAL.23
Kalkulasi Ilmiah Fungsional	
Kuadrat, Akar, Pangkat Tiga, Akar Pangkat Tiga, Pangkat,	
Akar Pangkat, Resiprokal dan Pi	HAL.28
Logaritma, Logaritma Alam, Antilogaritma dan Logab	HAL.29
Konversi Satuan Sudut	HAL.29
Raikulasi Trigonometri	HAL.30
Rilangan Acak	HAL 31
Produk (π) Perhitungan	.HAL.32
Penjumiahan (∑) Perhitungan	HAL.32
Nilai Maksimum dan Perhitungan Nilai Minimum	HAL.32
Setelah Divisi (Mod) Perhitungan Modulus	HAL.33
Relipatan Persekutuan Terkecii dan Faktor	HAL 33
Faktorisasi Prima	HAL 34
Kalkulasi Hasil Bagi dan SIsa	.HAL.35
Konversi Koordinat	HAL.35
Kalkulasi Nilai Absolut	HAL.36
Notasi Teknik	HAL.36
Kalkulasi Rilangan Kamalaka	UAL 27
Kalkulasi Basis-n dan Kalkulasi Lonika	HAL 39
Kalkulasi Statistik	
Pemilihan Tipe Statistik	HAL.40
Input Data Statistik	HAL.41
Mengedit Data Sampel Statistik	HAL.41
Layar Kalkulasi Statistik	HAL.42
Contoh Kalkulasi Statistik	ΗΔΙ 44
Kalkulasi Distribusi	HAL.45
Kalkulasi Persamaan	.HAL.47
Fungsi Solve	.HAL.49
Fungsi CALC	.HAL.51
Kalkulasi Direrensial	HAL.51
Kalkulasi Matriks	.HAL.52
Kalkulasi Vektor	.HAL.58
Kalkulasi Table Fungsi (x, y)	HAL.63
Mengganti Baterai	.HAL.64
Saran dan Peringatach	.HAL.64
SURSIIINDSI	

Penting Sebelum Tindakan Pencegahan Penggunaan

 Sebelum menggunakan produk, silahkan baca petunjuk ini dengan seksama. Dan tetap di tangan untuk referensi di masa mendatang.

Bagaimana menggunakan tutup geser

Membuka atau menutup tutup dengan menggeser sebagaimana diperlihatkan dalam gambar.

Tampilan

M STORCL STATCPLX MATX VCTREQN DIG FIX SCI LINE

<Indikator Status>

	: Tombol Shift
	: Tombol Alpha
M	: Memori Independen
STO	: Simpan Memori
RCL	: Panggil Memori
STAT	: Mode Statistik 1-Var & 2-Var
CPLX	: Mode Kalkulasi Bilangan Kompleks
MATX	: Mode Kalkulasi Matriks
VCTR	: Mode Kalkulasi Vektor
EQN	: Mode Kalkulasi Persamaan
	: Mode Derajat
	: Mode Radian
	: Mode Gradien
FIX	: Pengesetan Desimal-tetap
SCI	: Notasi Ilmiah
LINE	: Mode Tampilan Baris
	: Panah Ke Atas
\mathbf{v}	: Panah Ke Bawah
Disp	⁻ Tampilan Pernyataan-rangkan

Memulai

Menghidupkan, Mematikan

- Operasi pertama kali:
- 1. Tarik keluar lembar insulasi baterai, maka baterai akan terisi.
- 2. Tekan ON Shift CLR 3 = CA untuk mereset kalkulator.

Hidup: Jika on ditekan.

Mati: Jika 📥 📥 ditekan.

Fungsi Mati Otomatis:

Kalkulator secara otomatis akan mati jika tidak digunakan selama sekitar 7 menit.

Pengaturan Kontras Tampilan

■ Tekan ^{Shift} STUP ⓒ ⓒ (6: ◀ CONT ►), masuk ke layar Pengaturan Kontras Tampilan.

CONTRAST	
LIGHT	DARK
[4]	[▶]

Tekan () agar tampilan kontras gelap. Tekan () agar tampilan kontras terang. Tekan (CA) atau (ON) untuk mengonfirmasi dan menghapus layar.

Untuk menginisialisasi kontras LCD, ^{shift} (R) 3 =
 CA tekan di luar layar Pengaturan Kontras Tampilan.

Pemilihan Mode

Tekan Mone untuk masuk ke layar Pemilihan Mode Kalkulasi.

1:COMP	2:CPLX
3:STAT	4:BASE
5:EQN	6:TABLE
7:MATX	8:VCTR

Operasi	Mode		Indikator LCD
MODE 1	COMP	Kalkulasi normal	
MODE 2	CPLX	Kalkulasi bilangan kompleks	CPLX
MODE 3	STAT	3Kalkulasi statistik dan regresi	STAT
MODE 4	BASE	Kalkulasi yang melibatkan sistem bilangan khusus	
MODE 5	EQN	Penyelesaian persamaan	EQN
MODE 6	TABLE	Kalkulasi tabel fungsi	
MODE 7	MATX	Kalkulasi Matriks	MATX
MODE 8	VCTR	Kalkulasi vektor	VCTR

Mode awal adalah mode COMP

Menu Fungsi Aplikasi (Apps Key)

Mode Apps berisi fungsi matematika, appliance Apps dalam each kalkulasi mode, dalam each kalkulasi mode, the Apps fungsi akan be difference.

- Tekan MODE dan corresponding bilangan to masuk ke kalkulasi Tekan Duntuk masuk ke Apps menu.
- Tekan 🗍
- Tekan Q/Quntuk halaman berikutnya / sebelumnya.

i) Mode COMP

1:π	2:Σ
3:Max	4:Min
5:Q…r	6:Mod
7:LCM	8:GCD

iii) Mode STAT

Dalam mode SD

iv) Mode BASE

ii) Mode CPLX

Untuk memilih format input & output kalkulator [1] Maths atau [2] Line

[1] Maths – (Mode Matematika): Sebagian besar kalkulasi input dan output (contoh Pecahan, pi, bilangan akar kuadrat) diperlihatkan dalam format buku teks Matematika.

2 Mode baris

Mode Matematika

√5+1

[2] Line – (Mode baris): Sebagian besar kalkulasi input dan output diperlihatkan dalam format baris. Dan ikon "LINE" akan diperlihatkan. Mode baris \$
(5+1)](3-1)
Here
1.224744871

Untuk mode STAT, EQN, MATX, VCTR, format Input & Tampilan akan berganti menjadi Mode baris secara otomatis. Untuk memilih satuan sudut [3] Deg, [4] Rad atau [5] Gra
 [3] Deg: Satuan sudut dalam Derajat
 [4] Rad: Satuan sudut dalam Radian
 [5] Gra: Satuan sudut dalam Gradien

 $90^{\circ} = \frac{\pi}{2}$ radian = 100 grad

Untuk memilih digit atau notasi tampilan [6] Fix, [7] Sci atau [8] Norm

[6] Fix: Desimal Tetap, [Fix 0~9?] muncul, menentukan jumlah tempat desimal dengan menekan [0] – [9]. Contoh: 220 ÷ 7 = 31.4286 (FIX 4) = 31.43 (FIX 2)

[7] Sci: Notasi Ilmiah, [Sci 0~9?] muncul, menentukan jumlah digit signifikan dengan menekan [0] – [9]. Contoh: 220 ÷ 7 = 3.1429×10^1 (SCI 5) = 3.143×10^1 (SCI 4)

[8] Norm: Notasi Eksponensial, [Norm 1~2?] muncul, menentukan format notasi eksponensial dengan menekan [1] atau [2].

Norm 1: Notasi eksponensial secara otomatis digunakan untuk nilai bilangan bulat dengan lebih dari 10 digit dan nilai desimal dengan lebih dari **DUA** titik desimal.

Norm 2: Notasi eksponensial secara otomatis digunakan untuk nilai bilangan bulat dengan lebih dari 10 digit dan nilai desimal dengan lebih dari <u>SEMBILAN</u> tempat desimal.

Contoh: 1 ÷ 1000 = 1x10⁻³ (Norm 1) = 0.001 (Norm 2)

- Untuk memilih format pecahan [1] ab/c atau [2] d/c
 [1] a b/c: menentukan tampilan pecahan Campuran
 [2] d/c: menentukan tampilan pecahan takwajar
- Untuk memilih format tampilan bilangan kompleks
 [3]CLPX ([1] a+bi atau [2] r< θ)
 [1] a+bi: menentukan Koordinat Persegi Panjang
 [2] r< (θ) : menentukan Koordinat Kutub

Untuk memilih format tampilan statistik [4] STAT ([1] ON atau [2] OFF)

[1] ON: Memperlihatkan Kolom FREQ (Frekuensi) dalam Layar Input Data Statistik

[2] OFF: Menyembunyikan Kolom FREQ (Frekuensi) dalam Layar Input Data Statistik

Untuk memilih format tampilan titik desimal [5] Disp ([1] Dot atau [2] Comma)

[1] Dot: menentukan format titik untuk Tampilan hasil titik desimal

[2] Comma: menentukan format koma untuk Tampilan hasil titik desimal

■ Untuk mengatur kontras Tampilan [6] ⓒ CONT ③ Lihat bagian "Pengaturan Kontras Tampilan".

Sebelum Menggunakan Kalkulator

Periksa Mode Kalkulasi saat ini

Pastikan untuk memeriksa indikator status yang menunjukkan mode kalkulasi saat ini (COMP, STAT, TABLE), pengesetan format tampilan dan pengesetan satuan sudut (Deg, Rad, Gra)

Kembali ke setup awal

Menekan $\stackrel{\text{shift}}{\frown}$ $\stackrel{\text{CR}}{\frown}$ $\stackrel{\text{IR}}{\bullet}$ $\stackrel{\text{IR}}{=}$ (YES) CA untuk kembali ke setup kalkulator awal

Mode kalkulasi	: COMP
Format Input/Output	: Maths
Satuan sudut	: Deg
Digit Tampilan	: Norm 1
Format Tampilan Pecahan	: d/c
Input Data Statistik	: OFF
Format Titik Desimal	: Dot

Tindakan ini tidak akan menghapus memori variabel.

Menginisialisasi kalkulator

Jika Anda tidak yakin dengan pengesetan kalkulator saat ini, Anda disarankan untuk menginisialisasi kalkulator (mode kalkulasi "COMP", satuan sudut "Derajat", dan menghapus memori variabel dan reply), dan kontras LCD dengan menekan ^{Shift} CK **3** (AII) () (YES) (A.

Memasukkan Ungkapan dan Nilai

Kapasitas Input

F-789SGA memungkinkan Anda untuk memasukkan suatu kalkulasi tunggal hingga 99 byte. Biasanya, satu byte digunakan setiap kali Anda menekan satu tombol angka, tombol aritmetik, tombol fungsi ilmiah atau Ame. Beberapa fungsi membutuhkan 4 – 13byte. <u>hint</u>, Amp, dan tombol arah tidak akan menghabiskan byte.

Jika kapasitas input kurang dari 10 byte, kursor input akan berubah dari "∎" meniadi "■" memberi tahu memori sedang berjalan saat ini.

Mengedit Input

- Input baru dimulai di kiri tampilan. Jika data input adalah lebih dari 15 karakter (Mode baris) / 16 karakter (Mode Matematika), baris akan menggulung ke kanan secara berurutan. Anda dapat menggulung kembali ke kiri dengan menggunakan () dan () untuk meninjau input.
- Dalam mode Baris, tekan O untuk membuat kursor melompat ke awal memasukkan, sedangkan O akan melompat ke akhir.
- Dalam mode Matematika, tekan () untuk membuat kursor melompat ke awal memasukkan pada saat berada pada akhir kalkulasi input. atau tekan () untuk membuat kursor melompat keakhir memasukkan pada saat berada pada awal kalkulasi input.
- Hilangkan tanda perkalian dan tanda kurung tutup terakhir.

	Operasi 1:	Tampilan 1
Termasuk 🗙 *1,		2xlog(100) x (1+3)
) *2,) *3		
		16
	Operasi 2:	Tampilan 2
Menghilangkan	Operasi 2:	Tampilan 2 2log(100)(1+3)
Menghilangkan	Operasi 2: 200100)(1 +3=	Tampilan 2 2log(100)(1+3)

Contoh: 2 x log 100 x (1+3) = 16

- *1. Hilangkan tanda perkalian (x)
 - Input sebelum tanda kurung buka (: 1 x (2+3)
 - Input sebelum fungsi ilmiah yang termasuk tanda kurung: 2 x cos(30)
 - Input sebelum fungsi bilangan Acak
 - Input sebelum Variabel (A, B, C, D, X, Y, M), π, θ

- *2. Fungsi ilmiah dilengkapi dengan tanda kurung buka. Contoh: sin(, cos(, Pol(, LCM(.... Anda perlu memasukkan argumen dan tanda kurung tutup).
- Hilangkan tanda kurung tutup terakhir sebelum =, M+, ^M, Shift dan C.

Mode Input insert dan overwrite

Dalam mode Baris, Anda dapat menggunakan mode INSERT

- dalam mode insert (Mode input asal), kursor adalah baris berkedip vertikal "]" untuk menyisipkan karakter baru.
- dalam mode overwrite, tekan tómbol int inset untuk memindahkan kursor ke " _ " horizontal berkedip dan mengganti karakter di posisi kursor saat ini.

Dalam mode Matematika, Anda hanya dapat menggunakan mode Insert.

Tiap kali format tampilan berubah dari mode Baris ke Mode Matematika, maka secara otomatis akan berganti menjadi mode Insert.

Menghapus dan Mengoreksi Ungkapan

Dalam mode Insert: Gerakkan kursor ke kanan karakter atau fungsi yang perlu dihapus, kemudian tekan DEL

Dalam mode overwrite: Gerakkan kursor di bawah karakter atau fungsi yang sedang dihapus, maka tekan [DEL].

Contoh: 1234567 + 889900

(1) Ganti entri (1234567 → 1234560)

Pengesetan Mode	Tombol yang bekerja	Tampilan (hanya Baris input)
Metode 1: Mode Baris/Matematika -	1234567 + 889900 () 7 kali	1234567l+889900
Mode Insert	DEL 0	1234560I+889900
Metode 2: Mode Baris – Mode Overwrite	Shift SET-UP 2 1234567 + 889900 Shift Insert	1234567+889900_
	🔇 8 kali	123456 <u>7</u> +889900
	0	1234560 <u>+</u> 889900

(2) Penghapusan (1234567 → 134567)

Metode 1: Mode	🔇 12 kali	12 34567+889900
Line/Maths - Mode Insert	DEL	1 34567+889900
Metode 2: Mode Baris	Shift Insert	1234567+889900_
- Mode Overwrite	🔇 13 kali	1 <u>2</u> 34567+889900
	DEL	1 <u>3</u> 4567+889900

(3) Penyisipan (889900 → 2889900)

Mode Line/Maths -

6 kali

1234567+|889900

1234567+2|889900

Memasukkan dan Tampilan result dalam Mode Matematika

■ Dalam Mode Matematika, hasil Input dan tampilan pecahan atau fungsi tertentu (log, x2, x3, x, √ , √ , √ , x⁻¹,10, e, Abs) diperlihatkan dalam format Tulisan Tangan/Matematika.

Contoh	Tombol yang bekerja	Tampilan
$\sqrt{3}$ 2	Abs 🗤 3 🕥 🗕	$\sqrt{3} - \frac{2}{\sqrt{2}}$
$\left \begin{array}{c} \sqrt{3} & \sqrt{2} \end{array} \right $	2 <i>d/c</i> \sqrt{a} 2 =	$\sqrt{3} - \sqrt{2}$

Catatan

- (1) Beberapa ungkapan input menyebabkan tinggi kalkulasi ungkapan lebih besar dari satu layar tampilan. Kapasitas input maksimum: 2 layar tampilan (31 dot x 2).
- (2) Kalkulator memori membatasi berapa banyak fungsi atau tanda kurung dapat dimasukkan dalam ungkapan tunggal. Dalam hal ini bagi ungkapan menjadi beberapa bagian dan hitung secara terpisah.
- (3) Jika bagian ungkapan yang Anda masukkan terpotong setelah kalkulasi dan dalam layar tampilan hasil Anda dapat menekan () atau) untuk melihat ungkapan yang lengkap.

Rentang Input dan Pesan Galat

Presisi Kalkulasi, Rentang Input

Jumlah Digit untuk Kalkulasi Internal	Sampai 18 digit
Presisi	±1 di digit ke-10 untuk kalkulasi tunggal. ±1 pada yang paling tidak signifikan untuk tampilan eksponensial
Rentang Kalkulasi	±1 × 10 ⁻⁹⁹ sampai ±9.999999999 × 10 ⁹⁹ atau 0

Rentang Input Kalkulasi Fungsi

Fungsi	Rentang Input				
	DEG	0 ≦ x <9×10 ⁹			
sinx	RAD	0 ≦ x <157 079 632.7			
	GRA	0 ≦ x <1x10 ¹⁰			
	DEG	0 ≦ x <9×10 ⁹			
COSX	RAD	0 ≦ x <157 079 632.7			
	GRA	0 ≦ x <1x10 ¹⁰			
	DEG	Sama seperti sinx, kecuali jika x =(2n-1)×90			
tanx	RAD	Sama seperti sinx, kecuali jika x =(2n-1)× π/2			
	GRA	Sama seperti sinx, kecuali jika x =(2n-1)×100			
sin ⁻¹ x	0 ≤ x :	≤1			
cos-1x					
tan ⁻¹ x	0 ≦ x ≦	≦9.999 999 999x10 ⁹⁹			
sinhx					
coshx	U ≧ X ≧ Z3U Z58 5U9 Z				
sinh ⁻¹ x	$0 \le x \le 4.999\ 999\ 999x10^{99}$				
cosh⁻¹x	1 ≤ x ≤ 4.999 999 999x10 ⁹⁹				
tanhx	0 ≤ x ≤ 9.999 999 999x10 ⁹⁹				
tanh ⁻¹ x	0 ≦ x ≦ 9.999 999 999x10 ⁻¹				
logx/lnx	0< x ≦ 9.999 999 999x10 ⁹⁹				
10×	-9.999 999 999 x10 ⁹⁹ ≦ x ≦ 99.999 999 99				
e ^x	$-9.999\ 999\ 999\ x10^{99} \le x \le 230.258\ 509\ 2$				
√x	0 ≤ x <1x10 ¹⁰⁰				
X ²	x <1x10 ⁵⁰				
x ³	x ≦2.154 434 69x10 ³³				
X-1	x <1x10 ¹⁰⁰ ,x ≠ 0				
³ √x	x <1x10 ¹⁰⁰				
x!	$0 \leq x \leq 69$ (x adalah sebuah bilangan bulat)				
nDr	$0 \le n < 1x10^{10}, 0 \le r \le n$ (n,r adalah bilangan bulat)				
10-1	1≦{n!/	((n-r)!} < 1x10 ¹⁰⁰			
nCr.	0 ≦ n <	$0 \le n < 1x10^{10}, 0 \le r \le n$ (n,r adalah bilangan bulat)			
IICI	$1 \le n!/r! < 1x10^{100} \text{ or } 1 \le n!/(n-r)! < 1x10^{100}$				

Fungsi	Rentang Input	
Del()	x , y ≦ 9.999 999 999x10 ⁹⁹	
POI(X,Y)	√x ² +y ² ≦ 9.999 999 999x10 ⁹⁹	
	0 ≤ r ≤ 9.999 999 999x10 ⁹⁹	
Rec(I,0)	θ : Sama seperti sinx	
	a ,b,c <1x10 ¹⁰⁰	
01.11	0≦b,c	
01 11	Nilai detik tampilan mempunyai galat +/-1 pada	
	tempat desimal kedua	
	x <1x10 ¹⁰⁰	
∢ 01 II	Konversi Desimal ↔ Seksagesimal	
	0°0′0″ ≦ x ≦9999999°59′59″	
	x>0: -1x10 ¹⁰⁰ < ylog x < 100	
A(57)	x=0: y>0	
··(X)	x<0: y=n,m/(2n+1) (m,n adalah bilangan bulat)	
	Namun demikian: -1x10 ¹⁰⁰ <ylog x <100< td=""></ylog x <100<>	
	y>0: x≠0, -1x10 ¹⁰⁰ <1/x logy<100	
x√v	y=0:x>0	
, ,	y<0:x=2n+1,(2n+1)/m (m≠0;m,n adalah bilangan bulat)	
a h/c	Total bilangan bulat, numerator, dan penyebut harus	
a D/C	10 digit atau kurang (termasuk tanda pembagian).	
i Dand(a h)	$0 \leq a < 1x10^{10}, 0 \leq b < 1x10^{10}$ (a,b mesti bilangan bulat	
i~Ranu(a,b)	positif atau)	
Pand	Hasil membangkitkan bilangan pseudo acak 3	
INditu	digit(0.000~0.999)	
	0 <x, 9.999="" 999="" 999x10<sup="" y,="" z="" ≤="">12 (bilangan bulat positif)</x,>	
LCIVI(X, y, Z)	Hasil asal jika x, y, z=0	
	0 <x, 9.999="" 999="" 999<br="" y,="" z="" ≤=""></x,> x1012 (bilang an bulat positif)	
GCD(x,y,z)	Hasil asal jika x, y, z=0	
	0 <x,y 9.999="" 999="" 999<br="" ≤=""></x,y> x1012 (bilang an bulat positif)	
0 (1111)	$0 \leq Q \leq 999$ 999 9999, $0 \leq r \leq 999$ 999 9999 (Q,r	
Qr(x,y)	bilangan bulat positif)	
	Hasil asal jika x=0	

Fungsi	Rentang Input		
	0< x,y ≤ 9.999999999x10 ¹²		
Mod(x,y)	Hasil asal=x jika y=0		
Tunggal-	x <1x10 ¹⁰⁰		
variabel	IFREQI<1x10 ¹⁰⁰		
Berpasangan-	x <1x10 ¹⁰⁰		
variabel	y <1x10 ¹⁰⁰		
	IFREQI<1x10 ¹⁰⁰		
ABS	x <1x10 ¹⁰⁰		
Pfact	x ≦ 9999999999 (bilangan bulat positif)		
	Positif: 0~0111 1111 1111 1111 1111 1111 1111 1		
BIN	Negatif: 1000 0000 0000 0000 0000 0000 0000 00		
	1111 1111 1111 1111 1111 1111 1111 1111		
DEC	Positive: 0~2147483647		
DEC	Negative: -2147483648~-1		
007	Positive: 0~177 7777 7777		
001	Negative: 200 0000 0000~377 7777 7777		
нех	Positive: 0~7FFF FFFF		
TLA	Negative: 8000 0000~FFFF FFFF		
$\sum (f(x), a, b)$	a dan b adalah bilangan bulat dalam rentang −1 • 10^10 < a $\leq b$ <1 • 10^10.		
$\prod (f(x), a, b)$	a dan b adalah bilangan bulat dalam rentang –1 • 10^10 < a ≤ b <1 • 10^10.		

 Galat bersifat kumulatif untuk kalkulasi berurutan, hal ini juga benar karena kalkulasi berurutan internal dilakukan untuk ^(xy), x√y, 3√, x!, nPr, nCr, dll. dan dapat menjadi besar.

Tampilan hasil menggunakan √

Hasil kalkulasi dapat ditampilkan dengan menggunakan $\sqrt{}$ jika semua kasus berikut:-

 Ketika Jika hasil kalkulasi pertengahan dan final ditampilkan dalam bentuk berikut:

	$0 \le a < 100, 1 \le d < 100$
$\pm \frac{a\sqrt{b}}{c} \pm \frac{a\sqrt{e}}{c}$	$0 \leq b < 1000, \ \ 1 < e < 1000$
c J	$1 \le c < 100, 1 \le f < 100$

 Ketika jumlah suku pada hasil kalkulasi pertengahan dan final adalah satu atau dua.

Urutan Operasi

Kalkulator ini secara otomatis akan menentukan prioritas operasi tiap perintah perorangan sebagai berikut:-

Prioritas 1	Panggil Memori (A, B, C, D, E, F, 0-9), Rand		
2nd	Kalkulasi dalam tanda kurung ().		
3rd	Fungsi dengan tanda kurung yang meminta argumen		
	input ke kanan Pol(, Rec(, d/dx, ∫dx, P(, Q(, Det(,		
	Trn(, Ide(, Adj(, Inv(, Arg(, Conjg(, Real(, Img(,		
	sin(, cos(, tan(, sin-1(, cos-1(, tan-1(, sinh(, cosh(,		
	tanh(, sinh ⁻¹ (, cosh ⁻¹ (, tanh ⁻¹ (, log(, ln(, e^(, 10^(, $(, $		
	$3\sqrt{3}$, Abs(, ROUND(, LCM(, GCD(, Qr(, i~Rand(
4th	Fungsi yang muncul setelah nilai input didahului nilai,		
	pangkat, akar pangkat:		
	x², x³, x ⁻¹ , x!, ° ' ", °, r, g, ^(, $\sqrt[x]{}$ (, Percent %, log _a b, EXP,		
	▶t		
5th	Pecahan: a b/c, d/c		
6th	Lambang awalan: () (tanda negatif), lambang basis-n		
	(d, h, b, o, Neg, Not)		
7th	Kalkulasi nilai perkiraan statistik: x, y, x1, x2		
	Perintah konversi metrik (cm → in, etc)		
8th	Perkalian di mana tanda dihapuskan: Tanda perkalian		
	dihapuskan tepat sebelum $\pi,e,variabel$ (2 π , 5A, $\piA,$		
	dll.), fungsi dengan tanda kurung (2 $\sqrt{-}$ (3), Asin(30), dll.)		
9th	Permutasi, kombinasi: nPr, nCr		
	Lambang koordinat kutub bilangan kompleks (<)		
10th	Dot: •		
11th	Perkalian dan pembagian: ×, ÷		
12th	Penambahan dan pengurangan: +, -		
13th	Logika AND (and)		
14th	Logika OR, XOR, XNOR (or, xor, xnor)		
15th	Perintah mengakhiri kalkulasi: =, M+, M- STO(simpan memori), FMLA, ▶r<θ, ▶a+bi		

- Pada tingkat presedensi yang sama, kalkulasi dilakukan dari kiri sampai kanan.
- Operasi yang terdapat dalam tanda kurung dilakukan pertama. Jika kalkulasi berisi suatu argumen yang merupakan sebuah bilangan negatif, bilangan negatif harus dimasukkan di dalam tanda kurung.

Contoh:

Jika perintah prioritas yang sama adalah campuran ke dalam satu kalkulasi.

Contoh 1:

Tumpukan Kalkulasi

- Kalkulator ini menggunakan area memori, yang dinamakan "tumpukan", untuk menyimpan untuk sementara waktu nilai angka (bilangan) perintah (+, -, x...) dan fungsi sesuai dengan presedensinya selama kalkulasi.
- Tumpukan angka mémpunyai 10 tingkat sedangkan tumpukan perintah mempunyai 128 tingkat. Galat tumpukan [Stack ERROR] terjadi tiap kali Anda mencoba melakukan kalkulasi yang melebihi kapasitas tumpukan.
- Kalkulasi dilakukan secara berurutan sesuai dengan "Urutan Operasi". Setelah kalkulasi dilakukan, nilai tumpukan tersimpan akan dikeluarkan.

Pesan Galat dan Lokator Galat

Kalkulator terkunci sedangkan pesan galat diperlihatkan pada tampilan untuk menunjukkan sebab galat.

- Tekan CA untuk menghapus pesan galat, maka kembali ke tampilan awal mode terakhir.
- Tekan () atau () untuk menayangkan ungkapan input dengan kursor ditempatkan di sebelah galat.
- Tekan on untuk menghapus pesan galat, saji ulang memory history dan kembali ke tampilan awal mode terakhir.

Pesan Galat	Sebab	Tindakan
Math ERROR	Hasil pertengahan atau final adalah di luar rentang kalkulasi yang diperbolehkan. Upaya untuk melakukan kalkulasi dengan menggunakan nilai yang melebihi rentang input yang diperbolehkan. Upaya untuk melaksanakan operasi taklogik (pembagian dengan nol, dl.)	Periksa nilai input dan pastikan semuanya dalam rentang yang diperbolehkan, perhatikan nilai-nilai dalam menggunakan area memori
Stack ERROR	 Kapasitas tumpukan angka atau tumpukan operator dilampaui. 	 Sederhanakan kalkulasi. Bagi kalkulasi tersebut menjadi dua atau lebih bagian yang terpisah.
Syntax ERROR	Upaya untuk melakukan semua operasi matematika taksah.	Tekan (Oatau (Ountuk menampilkan kursor di lokasi galat, lakukan perbaikan yang sesuai
Insufficient MEM	Hasil kalkulasi parameter mode Tabel Fungsi menyebabkan lebih dari 30 nilai-x dihasilkan untuk tabel	Sempitkan rentang kalkulasi tabel dengan mengubah nilai start, end, dan step, dan coba lagi.
Dimension ERROR (hanya dalam Matriks atau Vektor)	 Pada mode Matriks dan Vektor, dimensi (baris, kolom) pada tiga. Upaya untuk melakukan operasi matriks/vektor taksah. 	Tekan 🕜 atau 🕥 untuk menampilkan lokasi sebab galat dan melakukan perbaikan yang diperlukan.
Tidak Dapat Menyelesaikan GALAT (hanya dalam fungsi SOLVE)	Kalkulator tidak dapat mendapatkan penyelesaian.	 Periksa galat dalam persamaan yang Anda masukkan. Masukkan nilai untuk penyelesaian variabel yang dekat dengan penyelesaian yang diharapkan dan coba lagi.
Variable ERROR (hanya dalam fungsi SOLVE)	Persamaan bukan merupakan persamaan yang benar. Persamaan tidak termasuk variabel X. Variabel penyelesaian tidak serupa dengan variabel yang ditentukan dalam ungkapan.	Persamaan yang tepat untuk memasukkan variabel X. Persamaan yang tepat untuk mencocokkan solusi dan ekspresi variabel. (lihat HAL.49)
Time Out ERROR (hanya dalam Kalkulasi Diferensial atau pengintegralan)	Perhitungan berakhir tanpa mengakhiri persyaratan Menjadi Terpenuhi.	revisi akhir yang diberikan dan coba lagi. (lihat HAL P.51 - 53)
Argumen ERROR	Penggunaan argumen takwajar.	Tekan 🕢 atau 🕥 untuk menampilkan lokasi sebab suatu galat dan melakukan perbaikan yang diperlukan.

Kalkulasi Dasar

- Tekan MODE 1 untuk masuk ke mode COMP.
- Selama kalkulasi yang sibuk, kalkulator memperlihatkan pesan [PROCESSING] (tanpa hasil kalkulasi), Tekan tombol **CA** untuk memutuskan operasi kalkulasi.

Kalkulasi Aritmetik

- Untuk menghitung nilai negatif (tidak termasuk eksponen • negatif) masukkan dalam tanda kurung.
- Kalkulator ini mendukung 99 tingkat ungkapan dalam tanda kurung.

Contoh	Tombol yang bekerja	Tampilan	
(-2.5) ²	((-) 2 • 5) x2 =	$(-2.5)^2$ $\frac{25}{4}$	
(4 x 10 ⁷⁵)(-2 x 10 ⁻⁷⁹)	4 EXP 7 5 X (-) 2 EXP (-) 7 9 =	4 _E 75x-2 _E -79 - <u>1</u> 1250	

Kalkulasi Memori

Variabel Memori

- Ada 19 variabel memori (0 9, A F. M. X dan Y), vang menvimpan data, hasil, atau nilai khusus,
- Simpan nilai ke dalam memori dengan menekan + Variabel memori.
- Panggil nilai memori dengan menekan RCL + Variabel memori.
- Isi memori dapat dihapus dengan menekan 0 5 mit 50 • + Variabel memori.

H

Contoh: 23 + 7 → A (30 simpan ke dalam A), hitung 2 sinA dan hapus memori A.

Contoh	Tombol yang bekerja	Tampilan	
23 + 7 → A	2 3 + 7 ^{shift}	23+7 → A	
	STO A	30	
2 x sin A = 1	2 sin Alpha A =	2sin(A	
		1	
Menghapus	0 Shift STO A	0 → A	
memori		0	

Memori Independen

- Memori independen menggunakan area memori yang sama seperti M. variabel. Mudah sekali menghitung total kumulatif Cukup dengan menekan meter (tambahkan ke memori) atau (kurangkan dari memori)
 Isi memori dipertahankan meskipun kalkulator dalam
- Isi memori dipertahankan meskipun kalkulator dalam keadaan mati.
- Menghapus memori independen (M) dengan menekan
 O Shift 500 M
- Menghapus semua nilai memori dengan menekan ^{shift} CR 2(MCL) (CA).

Memori Jawaban

- Nilai input atau hasil kalkulasi paling akhir secara otomatis akan disimpan ke dalam memori jawaban tiap kali Anda menekan =, <u>Shift</u> =, <u>M+</u>, <u>Shift</u> *, <u>Shift</u> *
 Memori jawaban dapat menyimpan hingga 18 digit.
- Panggil kembali dan gunakan memori Jawaban yang terakhir disimpan dengan menekan Ans.
- Memori Jawaban tidak diperbarui ketika operasi galat telah dilakukan.
- Isi memori Jawaban dapat disimpan meskipun menekan [CA], mengubah mode kalkulasi, atau turning off the kalkulator.

Contoh	Tombol yang bekerja	Tampilan	
123 + 456 → M+,	123+4	Ans ²	
Ans ² = 335,241	5 6 M+ x ² =	335241	
789900 – Ans =	78990	789900-Ans	
454,659	0 — Ans =	454659	

Kalkulasi Pecahan

Kalkulator mendukung kalkulasi Pecahan dan konversi antara Pecahan, Titik desimal, Pecahan campuran dan Pecahan takwajar.

- Menentukan format tampilan hasil kalkulasi pecahan baik dengan pecahan campuran(■^a/_a) atau pecahan takwajar (^a/_a) dalam menu set-up.
- Pada pengesetan asal, pecahan ditampilkan sebagai pecahan takwajar (--).
- Hasil tampilan pecahan campuran hanya tersedia setelah menetapkan (■[□]/_□) dalam menu setup.

	Pecahan Takwajar (d/c)	Pecahan Campuran (a b/c)		
Mode Matematika	<u>11</u> <u>3</u>	$3\frac{2}{3}$		
Mode Baris	11_ 3	3_ 2_ 3		

- Tekan F-D untuk berpindah <u>hasil kalkulasi antara format</u> pecahan dan desimal.
- Tekan havan and tekan a

 Hasilnya akan ditampilkan dalam format desimal secara otomatis tiap kali total digit nilai pecahan (bilangan bulat + pembilang + penyebut + tanda pemisah) lebih dari 10.

Apabila kalkulasi pecahan dicampur dengan nilai desimal, hasilnya akan ditampilkan dengan format desimal.

Konversi Pecahan ↔ Titik desimal

Contoh	Tombol yang bekerja	Tampilan
$1\frac{1}{2} + \frac{5}{6} = \frac{7}{3}$	1 shift = 1 3 2 3 + 5 = 6 =	$1\frac{1}{2} + \frac{5}{6}$ $\frac{7}{3}$
$\frac{7}{3} \leftrightarrow 2.33333333333333333333333333333333333$	F-D	$1\frac{1}{2} + \frac{5}{6}$
(1 occanicant + 2 occanical)		2.333333333
$2.3333333333 \leftrightarrow 2\frac{1}{3}$		$1\frac{1}{2} + \frac{5}{6}$
(Pecahan ↔Desimal Campuran)		$2\frac{1}{3}$

Pertukaran Nilai Tampilan

- Dalam mode Matematika, menekan [F→D] untuk mengubah nilai hasii kalkulasi antara bentuk pecahan ↔ bentuk π Desimal, bentuk ↔ bentuk Desimal, bentuk √ ↔ bentuk Desimal.
- Dalam mode baris, menekan [--] HANYA untuk mengubah nilai hasil kalkulasi antara bentuk pecahan → bentuk Desimal, kalkulasi lainnya π dan $\sqrt{}$ hanya akan menampilkan nilai desimal.

MODE BARIS: SHIT SET-UP 2

Contoh	Tombol yang bekerja Tampilan		mpilan
$\frac{2}{3} + 2 = \frac{8}{3} = 2.6666666667$	2 🗄 3 🕂	2_3+2	
5 5	2 =		8_3
	F-D	2_3+2	
			2.666666667

Contoh	Tombol yang bekerja	Tampilan
$\frac{2}{3} + 2 = \frac{8}{3} = 2.6666666667$	2 : 3) + 2 =	$\frac{2}{3}+2$ $\frac{8}{3}$
	F-D	$\frac{2}{3}$ +2 2.6666666667
$\tan 30 = \frac{\sqrt{3}}{3}$	tan 3 0 =	$\tan(30)$ $\frac{\sqrt{3}}{3}$
-0.5775502692	F-D	tan(30 0.5773502692
$\pi + 8 = \frac{1}{8}\pi$ =0.3926990817	Shift π ÷ 8 =	$\pi \div 8$ $\frac{1}{8}\pi$
	F ⊷D	π ÷ 8 0.3926990817

CATATAN

- Beberapa hasil Kalkulasi, menekan F-D tombol tidak akan mengonversi nilai tampilan.
- Beberapa konversi hasil tampilan mungkin berlangsung lama.

Contoh	Tombol yang bekerja	Tampilan
Untuk menghitung	820×2	820x25%
25% dari 820	5 ^{Shift} [‰] =	205
Persentase 750	7 5 0 ÷ 1	750÷1250%
lawan 1250	2 5 0 ^{shift} %	
		60

Kalkulasi Derajat-Menit-Detik

Gunakan tombol derajat (jam), menit dan detik untuk melaksanakan suatu kalkulasi seksagesimal (sistem notasi basis-60) atau mengonversi nilai seksagesimal ke dalam nilai desimal.

Derajat-Menit-detik ↔ Titik desimal

Contoh	Tombol yang bekerja	Tampilan
86°37'34.2" ÷ 0.7 = 123°45'6"	86°°°37 °°°34°2 °°°°÷0°7	86°37 ° 34.2 ° ÷ 0.7
		123°45'6"
123°45'6" → 123.7516667	• • •	86°37 ° 34.2 ° ÷ 0.7
		123.7516667
2.3456 → 2°20'44.16"	2•345 6=•·"	2.3456 2°20'44.16"

0111

Ulangan & Pernyataan-rangkap

Fungsi Memori Ulangan

- · Memori ulangan hanya tersedia dalam Mode COMP.
- Setelah kalkulasi dilaksanakan, input dan hasil kalkulasi secara otomatis akan disimpan dalam memori ulangan.
- Menekan () atau () dapat mengulang riwayat input dan hasil kalkulasi yang telah dilakukan.
- Jika ▷ Indikator berada di sisi kanan tampilan hasil kalkulasi, Anda perlu menekan (A) dan kemudian () atau
 () untuk menggulung kalkulasi.
- Memori ulangan dihapus jika Anda press
 - 1. Menginisialisasi pengesetan kalkulator dengan
 - 2. Berubah dari satu mode kalkulasi atau mode tampilan ke yang lainnya.
 - 3. Tekan tombol ON.
 - 4. Tekan Shift OFF untuk mematikan mesin.

Fungsi Pernyataan-rangkap

- Gunakan titik dua : untuk menyatukan dua atau lebih input kalkulasi.
- Pernyataan yang pertama kali dilakukan akan mempunyai indikator "Disp", dan ikon "Disp" akan hilang setelah pernyataan terakhir dilaksanakan.

Contoh	Tombol yang bekerja	Tampi	lan
1x12=12 2+25=27 menggunakan	1 X 1 2 Alpha 	1x12:2+25	
pernyataan-rangkap	Ξ	1x12	▲ Disp
			12
	Ξ	2+25	•
			27
Saji ulang riwayat kalkulasi sebelumnya	\odot	1x12	•
(1 x 12 = 12)			12

Kalkulasi Nilai Konstanta

F-789SGA mempunyai total 79 nilai konstanta bawaan, Anda dapat masuk (atau keluar) pemilihan menu nilai konstanta dengan menekan shift (viii), tampilan berikut akan diperlihatkan:

- Untuk memilih nilai konstanta cukup tekan tombol (Satau). Kursor pemilihan akan bergeser ke kiri atau kanan untuk memberi garis bawah lambang konstanta dan baris bawah tampilan akan memperlihatkan nilai lambang konstanta yang diberi garis bawah.
- Lambang konstanta yang diberi garis bawah akan dipilih jika Anda menekan (=).
- Anda dapat memperoleh seketika nilai konstanta jika Anda memasukkan nomor item nilai konstanta dan menekan = jika kursor pemilihan memberi garis bawah <u>0</u> <u>0</u>.

Tombol yang bekerja	Tampilan		
Shift C-Value	Input 1-79 <u>00</u>		
(halaman pemilihan menu)	∢ mp mn me mµ ao ⊳		
35=	gl		
+ 35 =	g+35 12		
E E X 50 E	Ansx50 2240.33		

Tabel Konstanta

NO.	Konstanta	Lambang	Nilai	Satuan
1.	Massa proton	mp	1.672621777x10 ⁻²⁷	kg
2.	Massa neutron	mn	1.674927351 x10 ⁻²⁷ kg	
3.	Massa elektron	me	9.10938291x10 ⁻³¹	kg
4.	Massa muon	mμ	1.883531475x10 ⁻²⁸	kg
5.	Radius Bohrα / 4πR∞	a ₀	0.52917721092x10 ⁻¹⁰	m
6.	Konstanta Planck	h	6.62606957 x10 ⁻³⁴	Js
7.	Magneton nuklir e \hbar / 2m _p	μ _N	5.05078353 x10 ⁻²⁷	J T ⁻¹
8.	Magneton Bohr e \hbar / 2m _e	μ _B	927.400968 x10 ⁻²⁶	J T ⁻¹
9.	h / 2π	ħ	1.054571726 x10 ⁻³⁴	Js
10.	Konstanta struktur lembut	α	7.2973525698x10 ⁻³	
	e ² / 4πε ₀ ħ c			
11.	Radius elektron klasik α^2a_0	r _e	2.8179403267x10 ⁻¹⁵	m
12.	Panjang gelombang Compton $h/m_{\rm e}c$	λς	2.4263102389 x10 ⁻¹²	m
13.	Rasio giromagnetik Proton $2\mu_p/\hbar$	γ _p	2.675222005 x10 ⁸	s ⁻¹ T ⁻¹
14.	Panjang gelombang Compton Proton $h/\rm m_pc$	λ _{c,p}	1.32140985623 x10 ⁻¹⁵	m
15.	Panjang gelombang Compton Neutron $h/{\rm m_nc}$	λ _{c,n}	1.3195909068x10 ⁻¹⁵	m
16.	Konstanta Rydberg $\alpha^2\mathrm{m_ec}/2h$	R∞	10973731.568539	m ⁻¹
17.	Satuan masa atom (disatukan)	u	1.660538921 x10 ⁻²⁷	kg
18.	Momen magnetik proton	μρ	1.410606743x10 ⁻²⁶	J T ⁻¹
19.	Momen magnetik elektron	μ _e	-928.476430x10 ⁻²⁶	J T ⁻¹
20.	Momen magnetik neutron	μn	-0.96623647 x10 ⁻²⁶	J T ⁻¹
21.	Momen magnetik muon	μμ	-4.49044807 x10 ⁻²⁶	J T ⁻¹
22.	Konstanta Faraday N _A e	F	96485.3365	C mol ⁻¹
23.	Muatan elementer	е	1.602176565x10 ⁻¹⁹	С
24.	Konstanta Avogadro	NA	6.02214129x10 ²³	mol ⁻¹
25.	Konstanta Boltzmann R / NA	k	1.3806488 x10 ⁻²³	J K ⁻¹
26.	Volume molar gas ideal RT / p	Vm	22.413968 x10 ⁻³	m ³ mol ⁻¹
	T=273.15 K, p=101.325 kPa			
27.	Konstanta gas Molar	R	8.3144621	J mo l ⁻¹ K ⁻¹
28.	Kecepatan cahaya dalam vakum	c ₀	299792458	m s ⁻¹
29.	Konstanta radiasi pertama $2\pi hc^2$	C1	3.74177153x10 ⁻¹⁶	W m ²
30.	Konstanta radiasi kedua hc/k	c ₂	1.4387770 x10 ⁻²	m K

NO.	Konstanta	Lambang	Nilai	Satuan
31.	Konstanta Stefan-Boltzmann	σ	5.670373x10 ⁻⁸	W m ⁻² K ⁻⁴
32.	Konstanta elektrik $1/\mu_0 c^2$	ε0	8.854187817 x10 ⁻¹²	Fm ⁻¹
33.	Konstanta magnetik	μο	12.566370614x10 ⁻⁷	N A ⁻²
34.	Kuantum fluks magnetik h / 2e	Φ0	2.067833758 x10 ⁻¹⁵	Wb
35.	Percepatan gravitasi standar	g	9.80665	ms ⁻²
36.	Kuantum konduktansi 2e2/h	G ₀	7.7480917346x10 ⁻⁵	S
37.	Impedansi karakteristik vakum $\sqrt{\mu}_0 \ / \ \epsilon_0$ = $\mu_0 c$	Z ₀	376.730313461	Ω
38.	Suhu Celsius	t	273.15	
39.	Konstanta gravitasi Newtonian	G	6.67384 x10 ⁻¹¹	m ³ kg ⁻¹ s ⁻²
40.	Atmosfer standar	atm	101325	Pa
41.	Faktor-g proton 2 μ_{p}/μ_{N}	gp	5.585694713	
42.	λ _{c,n} /2π	τ _{c,n}	0.21001941568x10 ⁻¹⁵	m
43.	Panjang Planck $\hbar/$ mpc=($\hbar{\rm G}/{\rm c}^3)^{1/2}$	IΡ	1.616199x10 ⁻³⁵	m
44.	Waktu Planck IP / c=($\hbar\text{G}/\text{c}^5)^{1/2}$	tp	5.39106 x10 ⁻³⁵	s
45.	Massa Planck (ħc/G) ^{1/2}	mp	2.17651 x10 ⁻⁸	kg
46.	Konstanta massa atom	m _u	1.660538921 x10 ⁻²⁷	kg
47.	Elektron volt: (e/c) J	eV	1.602176565x10 ⁻¹⁹	J
48.	Konstanta planck molar	N _A h	3.9903127176x10 ⁻¹⁰	Js mo l ¹
49.	Konstanta hukum pergeseran Wien	b	2.8977721 x10 ⁻³	m K
50.	parameter kisi Si (dalam vakum, 22.5°C)	а	543.1020504 x 10 ⁻¹²	m
51.	Energi Hartree $e^2/4\pi\epsilon_{0}a_0$	Eh	4.35974434 x10 ⁻¹⁸	J
52.	Konstanta Loschimdt N _A /Vm	n ₀	2.6867805 x10 ²⁵	m ⁻³
53.	Balikan kuantum konduktansi	G0 ⁻¹	12906.4037217	Ω
54.	Konstanta Josephson 2e/ h	KJ	483597.870 x10 ⁹	Hz V ⁻¹
55.	Konstanta Von Klitzing h/e ²	Rĸ	25812.8074434	Ω
56.	$\lambda_c/2\pi$	λc	386.15926800x10 ⁻¹⁵	m
57.	Penampang lintang Thomson(8 $\pi/$ 3)r^2_{e}	σ_{e}	0.6652458734 x10 ⁻²⁸	m ²
58.	Anomali magnetik momen elektron μ_{B} / μ_{B} -1	a _e	1.15965218076 x10 ⁻³	
59.	g-faktor-2 elektron (1+ a _e)	g _e	-2.00231930436153	
60.	Rasio giromagnetik elektron 2 μ_{e} / \dot{h}	γe	1.760859708x10 ¹¹	s ⁻¹ T ⁻¹
61.	Anomali magnetik momen muon	a _μ	1.16592091 x10 ⁻³	
62.	g-faktor-2 muon (1+ a _µ)	gμ	-2.0023318418	

NO.	Konstanta	Lambang	Nilai	Satuan
63.	Panjang gelombang Compton muon $h/m_{\mu}c$	λ _{c,μ}	11.73444103x10 ⁻¹⁵	m
64.	$\lambda_{c,\mu}/2\pi$	λ _{c,μ}	1.867594294x10 ⁻¹⁵	m
65.	Panjang gelombang Compton Tau h / m $_{ au}$ c	λ _{c,τ}	0.697787 x10 ⁻¹⁵	m
66.	λ _{c,τ} /2π	λ _{c,τ}	0.111056 x10 ⁻¹⁵	m
67.	Massa Tau	mτ	3.16747 x10 ⁻²⁷	kg
68.	λ _{c,p} / 2π	λ _{c,p}	0.21030891047 x10 ⁻¹⁵	m
69.	Momen magnetik proton berperisai (H2O, bola, 25 °C)	μ'p	1.410570499 x10 ⁻²⁶	JT ⁻¹
70.	g-faktor neutron 2 μ_n / μ_N	gn	-3.82608545	
71.	Rasio giromagnetik neutron 2 μ _n / ħ	Ϋ́n	1.83247179 x10 ⁸	s ⁻¹ T ⁻¹
72.	Massa deuteron	m _d	3.34358348 x10 ⁻²⁷	kg
73.	Momen magnetik deuteron	μ _d	0.433073489 x10 ⁻²⁶	J T ⁻¹
74.	Massa Helion	m _h	5.00641234 x10 ⁻²⁷	kg
75.	Momen magnetik helion berperisai (gas, bola, 25°C)	μ'n	-1.074553044 x10 ⁻²⁶	J T ⁻¹
76.	Rasio giromagnetik helion berperisai 2] μ'_{h} / \hbar (gas, bola, 25 °C)	γ'n	2.037894659 x10 ⁸	s ⁻¹ T ⁻¹
77.	Massa partikel alfa	mα	6.64465675 x10 ⁻²⁷	kg
78.	Rasio giromagnetik proton berperisai 2 μ'_p/\hbar (gas, bola, 25 °C)	γ'p	2.675153268 x10 ⁸	s ⁻¹ T ⁻¹
79.	Koreksi perisai magnetik proton 1-µ ' $_p$ / µ $_p$ (gas, bola, 25 °C)	σ'n	25.694 x10 ⁻⁶	

! Nilai konstanta tidak dapat dibulatkan.

Sumber: CODATA Internationally 2010 http://physics.nist.gov/constants

Konversi Metriks

Kalkulator mempunyai 172pasangan konversi yang memungkinkan Anda mengonversi suatu bilangan menjadi dan dari satuan metrik yang telah ditentukan.

CONVT

- Tekan
 wr untuk masuk ke menu konversi.
- Ada 8 halaman kategori (jarak, luas, suhu, kapasitas, berat, energi, tekanan dan kecepatan) yang berisi 36 lambang metrik, Anda dapat menekan A atau yuntuk mengubah halaman pemilihan kategori.
- dalam satu halaman kategori, Anda dapat menggeser kursor pemilihan ke kiri atau ke kanan dengan menekan () atau ().

Halaman	Lambang	Satuan
1	feet	kaki
1	m	meter
1	mil	milliliter
1	mm	millimeter
1	in	inch
1	cm	centimeter
1	yd	yard
1	mile	mil
1	km	kilometer
2	ft ²	kaki persegi
2	yd ²	yard persegi
2	m ²	meter persegi
2	mile ²	mil persegi
2	km ²	kilometer persegi
2	hectares	hektar
2	acres	acre
3	۴	derajat Fahrenheit
3	°C	degree Celsius
4	gal	galon (Inggris.)
4	liter	liter
4	B.gal	galln (AS)
4	pint	pint
4	fl.oz	ons fluida (U.S.)
5	Tr.oz	ons (troy atau apothecary)
5	OZ	ons
5	lb	libra
5	Kg	kilogram
5	g	gram
6	J	joule
6	cal.f	kalori
7	atm	atmoser standar
7	Кра	kilopascal
7	mmHg	milimeter air raksa
7	cmH ₂ O	centimeter air
8	m/s	Meter per detik
8	km/h	Kilometer per jam

- Kembali ke mode kalkulasi dengan menekan (omer) di dalam menu pemilihan kategori. Setelah memilih satuan konversi dasar, tombol (Ô, ○) atau (omer) akan menjadi takberlaku.
- Jika hasil konversi overflow, [ERROR] akan diperlihatkan di tampilan bawah. Tekan
 untuk memilih nilai overflow tetapi skenario berikut berlaku:

Skenario A - Terus memilih nilai konversi lainnya dengan menekan 🕢 atau 🕥 .

Scenario B - Menghapus layar dan melompati pemilihan dengan menekan **ON** atau **CA**.

Scenario C - Lompat kembali ke layar kalkulasi sebelumnya dengan menekan [covir] .

Contoh: Lakukan konversi 10 + (5 ft² → m²) = 10.4645152

Tombol yang bekerja	Tampilan
(menu pemilihan menu)	Satuan (jarak) ▲▼ <u>feet</u> m mil mm in cm yd mile km
(konfirmasi pemilihan ft ²)	ft ² yd ² m ² mile ² km ² ha acre 5
(konfirmasi konversi	10+5ft ² ► m ²
nilai menjadi m ⁻)	10+5ft ² ▶ m ²
	10.4645152

Kalkulasi Ilmiah Fungsional

Tekan MODE 1 untuk masuk ke mode COMP.

 $\pi = 3.1415926535897932324$

e = 2.7182818284590452324

Kuadrat, Akar, Pangkat Tiga, Akar Pangkat Tiga, Pangkat, Akar Pangkat, Resiprokal dan Pi

Contoh	Tombol yang bekerja	Tampilan
$\left(\sqrt[3]{2^2+5^3}\right)^{-1} \times \pi$	$() \stackrel{\text{shift}}{\longrightarrow} \frac{x_{6}}{2} \frac{x^{2}}{x^{2}}$ $() \stackrel{\text{shift}}{\longrightarrow} \frac{x_{7}}{2} \frac{x^{2}}{2}$	$\left(\sqrt[3]{2^2+5^3}\right)^{-1} \times \pi$
= 0.6217559776) X^{-1} × Shift π	
		0.6217559776
$\left(\sqrt[3]{2^6} + \sqrt[5]{243}\right)$	$(\overset{\text{shift}}{\longrightarrow} \overset{\text{W}_0}{\longrightarrow} 2 x^0 $ $6 \mathrel{>} \mathrel{>} + \overset{\text{shift}}{\longrightarrow}$	$\left(\sqrt[3]{2^6} + \sqrt[5]{243}\right)$
= 7	5 2 4	
	3)))=	7

Logaritma, Logaritma alam, Antilogaritma dan logab

Contoh	Tombol yang bekerja	Display
e ⁻³ + 10 ^{1.2} + In3 = 16.99733128	$\begin{array}{c} \text{Shift} & e^{\circ} & (-) & 3 & 0 \\ \hline + & \text{Shift} & 1e^{\circ} & 1 & 0 \\ 2 & 0 & \mathbf{+} & \ln & 3 \end{array}$	$e^{-3} + 10^{1.2} + \ln(3$
		16.99733128
$\log_3 81 - \log 1 = 4$	Alpha logal 3 3 8 1 3 - log 1	$\log_3(81) - \log(1$
	Ξ	4

Konversi Satuan Sudut

Pengesetan satuan sudut kalkulator adalah "Derajat". Menekan shift \$FTUP\$ masuk ke menu setup untuk mengubah satuan menjadi "Radian" atau "Gradien",:

1:Maths 2:Line 3:Deg 4:Rad 5:Gra 6:Fix 7:Sci 8:Norm
--

Tekan tombol bilangan terkait 3, 4 atau 5 untuk satuan sudut yang Anda butuhkan. Maka tampilan akan memperlihatkan Indikator **D**, **R**, **G** sesuai tombol yang ditekan.

Lakukan konversi satuan sudut antara "Derajat", "Radian" dan "Gradien" dengan menekan "http://page.com/shift" (Com/State) and the subscripts and t

Kemudian, menekan 1, 2, atau 3 akan mengonversi nilai yang ditampilkan menjadi satuan sudut yang dipilih.

Contoh	Tombol yang bekerja	Tampilan
Lakukan konversi 180 derajat menjadi radian dan gradien	Shift SET-UP 4 1 8 Shift DRGP 1 =	180° Β π
(180° = π ^{Řad} = 200 ^{Gad})	Shift SET-UP 5 =	180° 200

Kalkulasi Trigonometri

Sebelum menggunakan fungsi trigonometrik (kecuali kalkulasi hiperbolik), memilih satuan sudut yang tepat (Deg/Rad/Gra) dengan menekan Shift Stup.

Pengesetan Satuan Sudut	Input Nilai Sudut	Rentang Nilai Input untuk √ dari hasil
Deg	Satuan of 15°	$ \pi < 9 \times 10^9$
Rad	Kelipatan $\frac{1}{12}\pi$ radian	$ \pi < 20\pi$
Gra	Kelipatan $\frac{50}{3}$ grad	$ \pi < 10000$

■ 90° = $\frac{\pi}{2}$ Radian = 100 Gradien.

MODE MATEMATIKA: Shift SET-UP 1

Contoh	Tombol yang bekerja	Tampila	ın
Mode Derajat	Shift SET-UP 3		D
Sin 60 = $\frac{\sqrt{3}}{2}$	sin 6 0 =	sin(60	$\frac{\sqrt{3}}{2}$
$\frac{1}{\sin 45^\circ}$ = Cosec 45° = $\sqrt{2}$	sin 4 5) <i>x</i>	sin(45) ⁻¹	
			√2

Fungsi hiperbolik (sinh/ cosh/ tanh), Hiperbolik Balikan (sinh⁻¹/cosh⁻¹/tanh⁻¹)

Menekan hyp masuk ke menu sub-hiperbolik.

Contoh	Tombol yang bekerja	Tampilan
sinh2.5 – cosh 2.5	hyp 1 2 • 5	$sinh(2.5) - cosh(\triangleright$
= -0.082084998) — hyp 2 2 • 5) =	-0.08208499862
Cosh-145	hyp 5 4 5 =	cosh ⁻¹ (45
= 4.499686191		4.499686191

Permutasi, Kombinasi, Faktorial dan Pembangkitan Bilangan Acak

- Permutasi: $n \Pr = \frac{n!}{(n-r)!}$
- Kombinasi: $nCr = \frac{n!}{r!(n-r)!}$
 - Faktorial: x!= x(x-1)(x-2)...(2)(1)

Contoh	Tombol yang bekerja	Tampilan
10P3 = 720		10 P 3
	Ξ	720
5C2 = 10	5 $\stackrel{\text{Shift}}{\frown}$ $\stackrel{\text{nCr}}{\frown}$ 2 =	5 C 2
		10
5! = 120	5 $\overset{\text{shift}}{\Box}$ $\overset{x!}{\Box}$ =	5!
		120

Pembangkitan Bilangan Acak

- Shift Rand : Membangkitkan bilangan acak antara 0.000 dan 0.999. Dan hasil tampilan akan berupa format pecahan dalam status mode Matematika.
- Alpha itand : Membangkitkan suatu bilangan acak antara dua bilangan bulat positif yang telah ditentukan. Entri dibagi dengan "."

Contoh	Tombol yang bekerja	Tampilan
Membangkitkan suatu bilangan acak antara 0.000 & 0.999	Shift Rand	Rand <u>139</u> 1000
Membangkitkan suatu bilangan bulat dari rentang 1 to 100	Alpha i-Rand 1 Shift i 1 0 0 =	i~Rand(1,100 33

*Nilai tersebut hanyalah sampel, hasil akan selalu berbeda.

Produk (∏) Perhitungan			
Tekan MODE 1 untuk masuk ke modus COMP.			
a = awal, b = akhir, c = rumus			
$\label{eq:Mode Mate: } \begin{array}{l} \underset{\chi=\mathbf{a}}{\mathbf{b}} \left(\mathbf{C}\right) \qquad \qquad \text{Mode Baris: } \Pi\left(\mathbf{c}, \mathbf{a}, \mathbf{b}\right) \end{array}$			
Contoh: Produk (x +1) 0 san	npai 5		
MODE MATEMATIKA	Shift SET-UP 1		
Tombol yang bekerja	Ta	mpilan	
$\frac{\text{Apps 1 Alpha X + 1}}{0 0 5 =}$		П(с , a , b) 720	
Peniumlahan (5) Per	hitungan		
	ululus madus 001	40	
$\mathbf{a} = awal, \mathbf{b} = akhir, \mathbf{c} = ru$	unus	ИР.	
Mode Mate: $\sum_{x \equiv a}^{b} (\mathbf{C})$ Mode Baris: $\sum (\mathbf{c}, \mathbf{a}, \mathbf{b})$			
x – a			
Contoh: Penjumlahan (x+1)	dari 1 sampai 5		
Contoh: Penjumlahan (x+1) MODE BARIS: Shift SET-UR	dari 1 sampai 5		
Contoh: Penjumlahan (x+1) MODE BARIS: Mire Serur Tombol yang bekerja	dari 1 sampai 5 2 Ta	mpilan	
Contoh: Penjumlahan (x+1) MODE BARIS: Shift Strup Tombol yang bekerja	dari 1 sampai 5 2 Σ (x+1, 1,5	mpilan	
Contoh: Penjumlahan (x+1) MODE BARIS: Shift Strup Tombol yang bekerja	dari 1 sampai 5 2 Τα Σ (x+1, 1,5	mpilan	
A-a Contoh: Penjumlahan (x+1) MODE BARIS: Shift Strup Tombol yang bekerja Apps 2 Alpha X + 1 Shift - 1 Shift - 5 =	dari 1 sampai 5 2 Σ (x+1, 1,5	mpilan	
X - a Contoh: Penjumlahan (x+1) MODE BARIS: Shift Tombol yang bekerja Apps Apps 1 Shift - 5	dari 1 sampai 5 Γ [2] Σ (x+1, 1,5	mpilan 20	
A-a Contoh: Penjumlahan (x+1) MODE BARIS: hiff Tombol yang bekerja App: 2 Alpha X + 1 Shift - 1 Shift - 5 =	dari 1 sampai 5 2 Τα Σ (x+1, 1,5 erhitungan Nil	mpilan 20 ai Minimum	
Contoh: Penjumlahan (x+1) MODE BARIS: hiff Tombol yang bekerja Apps 2 Alpha X + 1 shift - 1 Shift - 5 = Nilai Maksimum dan P Tekan Mooel 1 untuk mas	dari 1 sampai 5 2 Ta Σ (x+1, 1,5 erhitungan Nil suk ke modus CON	mpilan 20 ai Minimum //P.	
A - a Contoh: Penjumlahan (x+1) MODE BARIS: hiff Tombol yang bekerja App: 2 Alpha X + 1 Shift 1 Shift 5 = Nilai Maksimum dan P Tekan Mooel 1 untuk mas Pada lima PALING Bisa D	dari 1 sampai 5 2 Ta Σ (x+1, 1,5 rerhitungan Nil suk ke modus CON ihitung nilai.	mpilan 20 ai Minimum лр.	
A-a Contoh: Penjumlahan (x+1) MODE BARIS: hift strut Tombol yang bekerja App: 2 Alpha X + 1 shift : 1 shift : 5 = Nilai Maksimum dan P Tekan Mooel 1 untuk mas Pada lima PALING Bisa D MODE MATEMATIKA	dari 1 sampai 5 2 Ta Σ (x+1, 1,5 erhitungan Nil suk ke modus COM ihitung nilai. Stifft SFUP 1	mpilan 20 ai Minimum лр.	
A-a Contoh: Penjumlahan (x+1) MODE BARIS: http://strut/ Tombol yang bekerja App: App: 2 Alpha 4 1 5 Nilai Maksimum dan P Tekan Mooti 1 Pada lima PALING Bisa D MODE MATEMATIKA Contoh Tombol	dari 1 sampai 5 2 Tai Σ (x+1, 1,5 erhitungan Nil suk ke modus COM ihitung nilai. Shift Strup 1 ol yang bekerja	mpilan 20 ai Minimum MP. Tampilan	

nilai maksimum 3, sin30 dan cos30	$\frac{\sin 30}{\cos 60} =$	3
Untuk menghitung nilai minimum 3, sin30 dan cos30	Apps 4 3 Shift ; sin 3 0 / Shift ; COS 6 0 =	Min(3, sin(30), C▷ 2

Setelah Divisi (Mod) Perhitungan Modulus

Tekan MODE 1 untuk masuk ke modus COMP.

Contoh	Tombol yang bekerja	Tampilan
Setelah pembagian modulus (Mod) dari	Apps 6 2 3 Shift	Mod(23, 5
23 dan 5	<u> </u>	3
Setelah pembagian	Apps 6 (-) 2 3	Mod(-23, 5
-23 dan 5	shift '- 5 =	2

Kelipatan Persekutuan Terkecil dan Faktor Persekutuan Terbesar

- LCM: Menghitung kelipatan persekutuan terkecil di antara (maksimum) tiga bilangan bulat positif.
- GCD: Menghitung faktor persekutuan terbesar di antara (maksimum) tiga bilangan bulat positif.

Contoh	Tombol yang bekerja	Tampilan
LCM(15, 27, 39) = 1755	Apps 7 1 5 Shift 2 7 Shift 3 9 =	LCM(15,27,39 1755

Contoh	Tombol yang bekerja	Tampilan
GCD(12, 24, 60) = 12	Apps 8 1 2 Shift 2 4 Shift 6 0 =	GCD(12,24,60 12

Faktorisasi Prima

 Melakukan faktorisasi suatu bilangan bulat positif hingga 10 digit ke dalam faktor prima hingga 3 digit.

Bilangan Ptact: 0 < X < 99999 99999 (X adalah bilangan bulat)

 Bagian sisanya yang tidak dapat difaktorisasi akan dimasukkan dalam tanda kurung pada tampilan.

Contoh: 99999 99999 = 3² x 11 x 41 x 271 x (9091)

Tombol yang bekerja	Tampilan
9999999 9999=	■ ▲ 9999999999
Shift PFact	3 ² x11x41x271x(9▶
1777	∎ ▲ 1777
Shift PFact	(1777)

CATATAN

- Pada tiap operasi kalkulasi, menekan tombol di atau atau atau atau eng atau eng akan keluar dari tampilan hasil faktorisasi prima.
- Menggunakan menu setup untuk mengubah pengesetan satuan sudut (Deg, Rad, Gra) atau menampilkan pengesetan digital (Fix, Sci, Norm).
- [Math ERROR] akan diperlihatkan jika nilai desimal, pecahan, hasil kalkulasi nilai negatif atau Pol, Rec, Q...R ditampilkan.

Kalkulasi Hasil Bagi dan Sisa

- "Hasil bagi" (Q) adalah hasil suatu soal pembagian, "Sisa" (r) adalah nilai yang tersisa dalam sebuah soal pembagian bilangan bulat.
- Nilai hasil bagi terhitung (Q) dan sisa (r) secara otomatis akan disimpan ke dalam variabel memori "C" dan "D" yang telah ditentukan.
- Dalam mode Matematika, tekan () atau) untuk menggulung hasil kalkulasi yang panjang.
- Dalam mode Baris, nilai hasil bagi (Q) dan sisa (r) akan diperlihatkan pada 2 baris.
- Hanya Nilai Hasil Bagi (Q) yang dapat terus digunakan untuk kalkulasi selanjutnya atau disimpan ke dalam variabel memori.

Contoh	Tombol yang bekerja	Tampilan	
35 ÷ 10 = 3 x 10 +5 Q=3 R=5	Apps 5 3 5 Shift ' 1 0 =	Qr(35, 10 Q= 3 R= 5	3
Nilai Hasil Bagi (Q) + 3 = 6	+3=	Ans+3	6
Panggil Kembali Nilai Hasil Bagi (Q)		С	3
Panggil Kembali Nilai Sisa (r)		D	5

Konversi Koordinat

- Dengan koordinat kutub, Anda dapat menghitung dan menampilkan θ dalam rentang –180° < θ ≤ 180°. (Sama seperti Radian dan Gradien)
- Dalam mode Matematika, tékan atau untuk menggulung hasil kalkulasi.
- Dalam mode Baris, (x,y) atau (r, θ) akan diperlihatkan pada 2 baris.
- Setelah konversi, hasil secara otomatis akan diberikan kepada variabel memori X dan Y. Tekan RC X atau Y untuk memperlihatkan hasilnya.

ift Poll : Lakukan konversi koordinat persegi panjang (x, y) menjadi koordinat kutub (r, θ); Tekan Rcl _ untuk r, atau Rcl _ untuk θ.

Contoh	Tombol yang bekerja	Tampilan
Dengan koordinat	Shift Pol(1 Shift '	Pol(1, √3
$(x=1, y=\sqrt{3}).$	√⊡ 3 =	r=2, θ=60
Temukan koordinat		х
mode deraiat		2
mode derajat	RCL _	Y
		60

Shift Rect: Lakukan konversi koordinat kutub (r, θ) untuk koordinat persegi panjang (x, y); Tekan Rct x untuk x, atau Rct Y untuk y.

MODE BARIS:

Contoh	Tombol yang bekerja	Tampilan
Dengan koordinat kutub (r=2, θ=60°). Temukan koordinat	Shift Rec(2 Shift ;	Rec(2, 60 X= 1 Y= 1.732050808
y) pada mode		X 1
derajat	RCL Y	Y 1.732050808

Kalkulasi Nilai Absolut

MODE MATEMATIKA: SHIT SET 1

Contoh	Tombol yang bekerja	Tampilan
$ \sin(60-5)\times(-\pi) $	Abs sin 6 0 -	$ \sin(60-5)\times(-\pi) $
	5) X ((-)	
	Shift π) =	2.573442045

Notasi Teknik

MODE BARIS: A SET-UP 2

Contoh	Tombol yang bekerja	Tampilan
$1\div 200 = 5x_{10}^{-3}$	1÷200	1÷200
	Ξ	5x10 ⁻³
	ENG ENG	1÷200 5000x10 ⁻⁶
	Shift 4ENG	1÷200
		5X10 ⁻³

Kalkulasi Bilangan Kompleks

Bilangan kompleks dapat dinyatakan dalam bentuk persegi panjang (z = a + bi) atau bentuk kutub $(r \ge 0)$. Di mana " a " adalah bagian bilangan nyata, " bi " adalah bagian bilangan imajiner (dan i adalah satuan imajiner sama dengan akar kuadrat $-1, \sqrt{-1}$), " r " adalah nilai absolut, dan " θ " adalah argumen bilangan kompleks.

Abs

- Tekan MODE 2 untuk masuk ke mode CPLX.
- Tekan _____ untuk memilih jenis kalkulasi.

Pemilihan jenis Bilangan Kompleks

Ada 6 jenis kalkulasi bilangan kompleks setelah memasuki layar Jenis Bilangan Kompleks (Complex Number Type), maka tekan bilangan untuk memilih jenis Kalkulasi Bilangan Kompleks.

1:⊅r20 2	2:⊅a+bi
3:Ar9 4	4:Conj9
5:Real 0	5:Ima9

- Periksa pengesetan satuan sudut saat ini (Deg, Rad, Grad).
- Ikon [i] menunjukkan hasil tampilan adalah bagian bilangan imajiner; [∠] menunjukkan nilai tampilan adalah nilai argumen θ.
- Tetapi bilangan imajiner akan menggunakan kapasitas memori ulangan.

Konversi Bentuk Persegi Panjang dan Bentuk Kutub

Contoh	Tombol yang bekerja	Tampilan
3+4 <i>i</i> =	3 + 4 - ⁱ Apps	3+4 <i>i</i> ▶r∠θ
5∠53.13010235	1=	5∠53.13010235
√2<45=1+ <i>i</i>	√₀2 ⊗ ⊣ 4	√2∠45 = ▶a+b <i>i</i>
	5 <u>Apps</u> 2 =	1+ <i>i</i>

Kalkulasi Nilai Absolut dan Argumen

Dengan bilangan kompleks bentuk persegi panjang, Anda dapat menghitung nilai absolut (r) dengan tombol (θ) atau argumen [Abs] terkait dengan [Aps] [3].

Contoh	Tombol yang bekerja	Tampilan
Nilai absolut (r) dan	Abs 6 + 8 - i	Abs (6+8 <i>i</i>)
argumen (θ) jika bilangan kompleks		10
berupa 6+8 i	DEL Apps 3 =	Arg (6+8 <i>i</i>)
		53.13010235

Mengonjugasi bilangan kompleks

Jika bilangan kompleks adalah z = a + bi, nilai konjugat bilangan kompleks ini mesti z = a - bi.

Contoh	Tombol yang bekerja	Tampilan
3+4 <i>i</i> is 3–4 <i>i</i>	Apps 4 3 + 4 <i>i</i>) =	Conjg (3+4 <i>i</i>) 3 - 4 <i>i</i>

Menentukan bilangan kompleks Nyata/Imajiner

Contoh	Tombol yang bekerja	Tampilan
Bilangan kompleks	Apps 5 2 3 4	Nyata(23∠54)
nyata dan Imajiner adalah 23<54	54)=	13.5190608
	DEL Apps 6 =	Imajiner(23/254)
		18.60739087

Kalkulasi Basis-n dan Kalkulasi Logika

- Tekan MODE 4 untuk masuk ke mode Basis-n.
- Kalkulasi desimal (basis 10), heksadesimal (basis 16), biner (basis 2), oktal (basis 8), atau logika.
- Untuk memilih suatu sistem bilangan khusus dalam mode basis, cukup tekan besimal [DEC], Biner [BIN] atau Oktal [OCT]. Tekan tombol untuk melakukan kalkulasi logika termasuk:
- Tekan tombol department in the text of the text of tex of text of text of tex of tex of text of text of tex
- Jika hasil kalkulasi biner atau oktal adalah lebih dari 8 digit,
 akan ditampilkan untuk menunjukkan hasil mempunyai blok selanjutnya.

Menekan tombol dapat membentuk gelung antara blok-blok hasil.

Semua fungsi ilmiah tidak dapat digunakan, dan Anda tidak dapat memasukkan nilai dengan tempat desimal atau eksponen.

Contoh	Tombol yang bekerja	Tampilan
10101011+1100- 1001x101÷10 =10100001 (pada Mode Biner)	$\begin{array}{c} 101010\\ 11+100\\ -1001\times1\\ 01\div10=\\ \end{array}$	10101011+1100–1 ⊳ BIN 1010 0001
645+321–23x7÷2 =1064 (pada Mode Oktal)	°°°645+3 21-23× 7÷2≡	645+321-23x7÷2 [▲] OCT 00000001064
(77A6C+D9)xB÷F =57C87 (pada Mode Heksadesimal)	$\stackrel{\text{HEX}}{\overset{\circ}{}} (77 \stackrel{\text{A}}{} 6)$ $\stackrel{\circ}{} \stackrel{\circ}{} 9) \times$ $\stackrel{\scriptscriptstyle B}{} \stackrel{\scriptscriptstyle F}{} =$	(77A6C+D9)xB+F HEX 00057C87

Transformasi Basis-n $\overset{\text{DEC}}{\longrightarrow} \overset{\text{OCT}}{\longrightarrow} \overset{\text{HEX}}{\longrightarrow} \overset{\text{BIN}}{\longrightarrow}$

Contoh	Tombol yang bekerja	Tampilan
12345+101=12446	12345	12345+101
		DEC
		12446
	HEX	12345+101
		HEX
		000309E
	BIN	12345+101
		▲BIK 1/2 BIN
		1001 1110
	TOO	12345+101 ^
		OCT
		0000030236

Operasi Logik MODE MATEMATIKA: A SETUP 1

Contoh	Tombol yang bekerja	Tampilan
789ABC Xnor 147258	789 ^Å ^B ^C ^{Apps} 414 7258=	789ABCxnor147258 HEX FF93171B
Ans atau 789ABC	Ans 278 9	Ansor789ABC HEX FFFB9FBF
Neg 789ABC	Apps 6 7 8 9 A B C E	Neg(789ABC + HEX FF876544

Kalkulasi Statistik

- Tekan MODE 3 untuk masuk ke mode kalkulasi Statistik dan indikator "STAT" menyala.
- Tekan ^{Apps} 1 (Jenis) untuk memilih jenis kalkulasi.

Pemilihan jenis statistik

Ada 8 jenis Kalkulasi Statistik, setelah memasukkan layar **Pemilihan Jenis Statistik**, maka tekan bilangan untuk memilih jenis Kalkulasi Statistik.

1:SD	2:Lin
3:Quad 5:€ EXP	4:L09 6:ab EXP
7:Pwr	8:Inv

Menekan Tombol	Kalkulasi Statistik
1 (SD)	Statistik Satu-variabel (x)
2 (Lin)	Dua-variabel, regresi Linear (y= A+Bx)
3 (Quad)	Dua-variabel, regresi Kuadratik (y=A +Bx + Cx ²)
4 (Log)	Dua-variabel, regresi Logaritma (y=AxBInx)
5 (e EXP)	Dua-variabel, regresi eksponensial E (y=Ae ^{Bx})
6 (ab EXP)	Dua-variabel, regresi eksponensial ab (y=ABx)
7 (Pwr)	Dua-variabel, regresi Pangkat (y=Ax ^B)
8 (Inv)	Dua-variabel, regresi Balikan (y=A+B/x)

Input Data Statistik

Setelah mengonfirmasi jenis kalkulasi layar **Pemilihan Jenis** Statistik di atas atau dengan menekan 2 (Data) dalam mode STAT, layar Input Data Statistik berikut akan diperlihatkan.

1-variable STAT

2-variable STAT

1-variable STAT "FREQ ON"

- Setelah mengaktifkan Frekuensi Data di dalam menu setup kalkulator, kolom "FREQ" akan ditambahkan ke dalam layar di atas.
- · Berikut ini adalah jumlah baris maksimum untuk input data.

Jenis statistik	FREQ ON	FREQ OFF
Variabel Tunggal (hanya input x)	40	80
2 Variabel (x & y input)	26	40

- Ungkapan input dan nilai hasil tampilan dalam layar Input Data Statistik adalah dalam mode Baris (sama seperti Mode COMP dengan status mode Baris).
- Setelah data dimasukkan, maka tekan = untuk menyimpan nilai tersebut ke dalam register statistik dan menampilkan nilai (maks. 6 digit) dalam sel. Dan Anda dapat menekan tombol kursor untuk menggerakkan kursor di antara tiap sel.

Mengedit Data Sampel Statistik

Mengganti Data dalam sel

- Di dalam layar Input Data Statistik, gerakkan kursor ke sel yang ingin Anda edit.
- (2) Masukkan nilai data atau ungkapan baru, dan kemudian tekan =

Menghapus baris

- Di dalam layar Input Data Statistik, gerakkan kursor ke baris yang ingin Anda hapus.
- (2) Tekan DEL

Menyisipkan baris

- Di dalam layar Input Data Statistik, gerakkan kursor ke baris yang akan berada di bawah baris yang sedang disisipkan.
- (2) Tekan 3 (Edit)
- (3) Tekan 1 (Ins)

Menghapus Semua Input Data STAT

- (1) Tekan 3 (Edit)
- (2) Tekan 2 (Del-A)

Layar Kalkulasi Statistik

- Setelah memasukkan Data STAT, tekan Auntuk masuk ke layar Kalkulasi Statistik.
- Layar Kalkulasi Statistik adalah dalam mode Baris untuk Tampilan input & output
- Gunakan Menu Statistik untuk menghitung hasil Statistik. (S-SUM, S-VAR, S-PTS, Reg).

Menu Statistik

Di dalam layar Input Data Statistik atau layar Kalkulasi

Statistik, tekan mutuk menampilkan layar Menu Statistik.

1-variable STAT

2-variable STAT

Item STAT	Deskripsi
[1] Jenis	Untuk masuk ke layar jenis kalkulasi statistik
[2] Data	Untuk masuk ke layar input data statistik
[3] Edit	Untuk masuk ke sub-menu Edit untuk mengedit isi layar editor STAT
[4] S-SUM	Untuk masuk ke sub-menu S-Sum (menghitung sum)
[5] S-VAR	Untuk masuk ke sub-menu S-Var (menghitung variabel)
[6] S-PTS	Untuk masuk ke S-PTS sub-menu (menghitung titik)
[7] Distr	Untuk masuk ke sub-menu Distr (menghitung distribusi)
[8] Reg	Untuk masuk ke sub-menu Reg (kalkulasi Regresi)

Hasil kalkulasi statistik dalam [4] S-SUM, [5] S-VAR, [6] S-PTS, [8] Reg

Sub-menu STAT	-menu TAT Jenis STAT Nilai		Lambang	Operasi
S-SUM	1 & 2 variabel	Penjumlahan semua x2 nilai	Σx ²	^{Apps} 4 1
	STAT	Penjumlahan semua x nilai	Σx	^{Apps} 4 2
	Hanya	Penjumlahan semua y2 nilai	Σy ²	Apps 4 3
	2-variabel	Penjumlahan semua y nilai	Σу	Apps 4 4
	STAT	Penjumlahan xy pasangan	Σxy	Apps 4 5
		Penjumlahan semua x3 nilai	Σx3	^{Apps} 4 6
		Penjumlahan semua x2y pasangan	Σx ² y	Apps 4 7
		Penjumlahan semua x4 pasangan	∑x ⁴	Apps 4 8
S-VAR	1&2	Jumlah data sampel	n	Apps 5 1
	variabel	Rata-rata nilai x	x	Apps 5 2
	STAT	Deviasi standar populasi x	хơ _n	Apps 5 3
		Deviasi standar sampel x	х o_{n-1}	Apps 5 4
	Hanya	Rata-rata nilai y	ÿ	Apps 5 5
	2-variabel	Deviasi standar populasi y	y σ_{n}	Apps 5 6
	STAT	Deviasi standar sampel y	$y\sigma_{n-1}$	Apps 5 7
S-PTS	1 & 2 variabel	Nilai minimum X	minX	^{Apps} 6 1
	STAT	Nilai maksimum X	maxX	^{Apps} 6 2
	Hanya 1-variabel STAT	Rata-rata	med	^{Apps} 6 3
		Mode	mode	Apps 6 4
		1 kuartil nilai	Q1	Apps 6 5
		3 kuartil nilai	Q3	Apps 6 6
		Jarak	R	Apps 6 7
	Hanya 2 yariabol	Nilai minimum Y	minY	Apps 6 3
	STAT	Nilai maksimum Y	maxY	^{Apps} 6 4
Reg	Untuk	Koefisien regresi A	А	Apps 8 1
	non-Quad Reg	Koefisien regresi B	В	Apps 8 2
		Koefisien korelasi r	r	Apps 8 3
		Nilai perkiraan x	â	
		Nilai perkiraan y	ŷ	Apps 8 5
Reg	Hanya	Koefisien regresi A	А	Apps 8 1
	untuk Quad Reg	Koefisien regresi B	в	Apps 8 2
		Koefisien regresi C	С	Apps 8 3
		Nilai perkiraan x1	x1	Apps 8 4
		Nilai perkiraan x2	х̂2	Apps 8 5
		Nilai perkiraan y	ŷ	Apps 8 6

Contoh Kalkulasi Statistik

Contoh kalkulasi Statistik jenis SD:

Untuk menghitung $\sum x^2$, $\sum x$, n, \overline{x} , $x\sigma_n$, $x\sigma_n$, n, minX, maxX data: 75, 85, 90, 77, 79 dalam mode SD (Freq: OFF)

Tombol yang bekerja	Tampilan
MODE 3	1:SD 2:Lin 3:Quad 4:Log 5:0 EXP 6:ab EXP 7:Pwr 8:Inv
1 (SD)	
75=85=9 0=77=79 =	¥ 11 5 19
	Σx ² 33120
	Σx 406
	n 5
	x 81.2
	x <i>σ</i> n 5.528109984
	x <i>o</i> n-1 6.180614856

Contoh Kalkulasi Statistik jenis Regresi Kuadratik:

ABC Company menyelidiki keefektifan biaya iklan dalam satuan berkode, data berikut diperoleh:

Biaya iklan: X	18	35	40	21	19
Keefektifan: y (%)	38	54	59	40	38

Harap gunakan regresi untuk memperkirakan keefektifan (perkirakan nilai tersebut y) jika biaya iklan X=30, dan perkirakan tingkat biaya iklan (perkirakan nilai tersebut X₁, X₂) untuk keefektifan y = 50.

Tombol yang bekerja	Tampilan
MODE 3	1:SD 2:Lin 3:Quad 4:Lo9 5:0 EXP 6:ab EXP 7:Pwr 8:Inv
3 (Quad)	
$ \begin{array}{c} 18 = 35 = 4 \\ 0 = 21 = 19 \\ = \circ \circ 38 = 5 \\ 4 = 59 = 40 \\ = 38 = \end{array} $	4 21 Y UU 5 19 38
CA 3 0 Apps 8 6 =	30ŷ 48.69615715
CA 5 0 Apps 8 4 =	50x̂ ₁ 31.30538226
CA 5 0 Appz 8 5 =	50x̂ ₂ -167.1096731

Kalkulasi Distribusi

Setelah sampel data dimasukkan dalam mode Statistik (SD) atau Regresi (REG), Anda dapat melaksanakan normal distribusi normal atau distribusi kebolehjadian x seperti P(t), Q(t) dan R(t) di mana t adalah variat eksperimen kebolehjadian.

Tekan	Apps	7	untuk	menampilkar	n layar	kalkulasi	distribusi.

- 1: P(2: Q(3: R(4: ► t
- Tekan 1, 2, 3 atau 4 untuk kalkulasi terkait.

P(t): Kebolehjadian di bawah titik tertentu x	$P(t) = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-u}{\sigma}\right)^2} dt , \qquad $
Q(t): Kebolehjadian di bawah titik tertentu x dan di atas rata-rata	Q(t) = 0.5 - R(t),
R(t): Kebolehjadian di atas titik tertentu x	R(t) = 1 - P(t), x

Contoh: Hitung distribusi kebolehjadian P(t) untuk data sampel: 20, 43, 26, 46, 20, 43 jika x = 26.

Tombol yang bekerja	Tampilan	
MODE 3 1		
20=43= 26=46= 20=43=		
	26▶t	
	-0.6236095645	
	P(Ans	
	0.26644	

Kalkulasi Persamaan

23

.

Item Persamaan	Deskripsi
[1] 2 takdiketahui EQN	Persamaan Linear Serentak dengan dua takdiketahui
[2] 3 takdiketahui EQN	Persamaan Linear Serentak dengan tiga takdiketahui
[3] 4 takdiketahui EQN	Persamaan Linear Serentak dengan empat takdiketahui
[4] Quad EQN	Persamaan Kuadrasio, persamaan derajat 2
[5] Cubic EQN	Persamaan Kubik, persamaan derajat 3
[6] Quartic EQN	Persamaan Kuartik, persamaan derajat4

Persamaan Linear Serentak

Persamaan Linear Serentak Dua Takdiketahui:

 $a_1x + b_1y = c_1$ $a_2x + b_2y = c_2$

Persamaan Linear Serentak Tiga Takdiketahui:

 $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$

Persamaan Linear Serentak Empat Takdiketahui:

 $\begin{array}{l} a_1 w + b_1 x + c_1 y + d_1 z = e_1 \\ a_2 w + b_2 x + c_2 y + d_2 z = e_2 \\ a_3 w + b_3 x + c_3 y + d_3 z = e_3 \\ a_4 w + b_4 x + c_4 y + d_4 z = e_4 \end{array}$

Contoh: Selesaikan persamaan serentak dengan tiga takdiketahui:

2x + 4y - 4z = 20 2x - 2y + 4z = 85x - 2y - 2z = 20

Tombol yang bekerja	Tampilan
1 (3 takdiketahui)	
2=4=4= 20=	
2=-2=4= 8=	
5=(-)2=(-)2 =20=	년 년 년 - 4 20 - 2 4 8 - 2 - 2 20
Ξ	X=
	<u>11</u> 2
Ξ	Y=
	3
Ξ	Z=
	<u>3</u> 4

Persamaan Kuadratik, Kubik atau Quart

Persamaan kuadratik	: ax ² + bx + c = 0 (persamaan polinomial tingkat
	dua dalam suatu variabel tunggal x)
Persamaan kubik	: ax ³ + bx ² + cx + d = 0 (persamaan dengan
	polinomial kubik)
Quart persamaan	$ax^4 + bx^3 + cx^2 + dx + e = 0$

Contoh: Selesaikan persamaan kubik 5x3 + 2x2 - 2x + 1 = 0

Tombol yang bekerja	Tampilan		
(Persamaan Kubik)			
(,	0		
5=2=(-)2=	1 p 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -		
	1		
Ξ	X ₁ = -1		
Ξ	$X_2 = \frac{3}{10} + 0.331662479_i$		
Ξ	$X_3 = \frac{3}{10} - 0.331662479_i$		

Untuk persamaan kuadratik atau kubik, nama variabel dimulai dengan "X1".

Fungsi Solve

 Fungsi Solve menggunakan Metode Newton untuk mendapatkan solusi aproksimat persamaan.

Catatan: Fungsi SOLVE hanya dapat digunakan dalam Mode COMP.

- Berikut ini keterangan tentang jenis persamaan yang solusinya dapat diperoleh dengan menggunakan fungsi SOLVE.
- Persamaan yang berisi variabel X, Fungsi SOLVE menyelesaikan X, contohnya, X² + 2X - 2, X = Y + 3, X - 5 = A + B, X = tan(C),
 - Variabel X yang akan diselesaikan mesti diletakkan di sebelah kiri persamaan.
 Contoh, persamaan dimasukkan sebagai X² + 5X = 24 atau X² + 5X - 24 = 0 atau X² + 5X - 24
 - Ungkapan seperti X2 + 5X 24 akan diperlakukan sebagai X² + 5X 24 = 0, tidak perlu memasukkan "= 0".
- Input persamaan menggunakan sintaks berikut: {persamaan},{variabel solusi}

Pada umumnya, persamaan diselesaikan untuk X, kecuali ditentukan lain. Contoh, untuk menyelesaikan Y jika persamaan dimasukkan sebagai, Y = X + 5, Y

Peringatan saat menggunakan fungsi "Solve":

- Fungsi-fungsi berikut ⁷, ^d/₀, Σ, π, Pol, Rec, Q...r, Rand, i-Rand atau multi-statement tidak boleh dimasukkan ke dalam persamaan untuk fungsi SOLVE.
- Karena fungsi SOLVE menggunakan Metode Newton untuk mendapatkan solusi, meskipun ada beberapa solusi, hanya satu diantaranya yang akan ditunjukkan sebagai solusi.
- Fungsi SÓLVE boleh jadi tidak bisa mendapatkan solusi karena nilai awal yang ditentukan sebelumnya dari variabel solusi. Apabila hal ini terjadi, coba untuk mengubah nilai awal dari variabel solusi.
- Fungsi SOLVE mungkin tidak dapat menemukan solusi yang benar, apabila ada beberapa solusi.
- Jika persamaan berisi fungsi input yang termasuk kurung buka, jangan hilangkan kurung tutup.
- Akan muncul "Variable ERROR" jika ekspresi tidak berisi variabel yang ingin Anda selesaikan.
- Mětode Newton mempunyai masalah untuk menyelesaikan jenis fungsi berikut, contoh = e^X, y = ¹/_X, y = sin(x), y = √x, dll.
- Apabila persamaan membutuhkan waktu yang lama untuk solusinya, kalkulator akan menunjukkan layar "PROCESSING", Anda dapat menghentikan pemrosesan operasi SOLVE dengan menekan tombol (CA).

	-
Tombol yang bekerja	Tampilan
Alpha x Alpha = $1 = 3$ > Shift π Alpha B x^2 Alpha C	$X = \frac{1}{3} \pi B^2 C$
Shift Solive	B?
	0
5 =	C?
	0
20=	Solve for X
	Nilai awal
Variabel solusi	$X = \frac{1}{3}\pi B^{2}C$ $X = \boxed{Solusi} 523.5987756$
Presisi solusi	>L=K = 0

Contoh: Untuk menyelesaikan $X = \frac{1}{3}\pi B^2C$ (jika B=5; C=20)

 Presisi Solusi memperlihatkan hasil jika solusi yang diperoleh ditetapkan untuk yang diperoleh adalah lebih tinggi daripada jika nilai ini lebih dekat ke nol.

Layar Continue

 ŠOLVE melakukan konvergensi beberapa kali sesuai yang telah ditentukan sebelumnya. Jika tidak menemukan solusi, maka ditampilkan layar konfirmasi yang memperlihatkan "Continue: [=]", menanyakan apakah Anda ingin melanjutkan. Tekan (=) untuk melanjutkan atau (a) untuk membatalkan operasi SOLVE.

Fungsi CALC

 Fungsi CALC dianggap merupakan zona memori dengan maksimum 79 langkah bagi Anda untuk menyimpan ungkapan kalkulasi tunggal yang akan dipanggil dan dihitung beberapa kali dengan nilai-nilai yang berbeda. Setelah memasukkan ungkapan kalkulasi dan menekan œ.c., kalkulator akan meminta nilai saat ini dari variabel-variabel input Anda. Fungsi CALC hanya dapat digunakan dalam mode COMP atau mode CPLX. 			
Contoh: Untuk persamaan Y = 5x ² –2x +1, hitung nilai Y jika x = 5 atau x = 7.			
Tombol yang bekerja	Tampilan		
MODE 1 (MODE COMP)	Tampilan 0		
Tombol yang bekerja MoDE 1 (MODE COMP) Alpha Y Alpha Y Alpha Y	Tampilan 0 Y=5X ² -X+1 1		
Tombol yang bekerja Imosi (MODE COMP) Alpha - S Alpha - X X ² 2 Alpha - X + 1	Tampilan 0 Y=5X ² -X+1 0		
Tombol yang bekerja Imon 1 (MODE COMP) Albin - 5 Albin - x² - 2 Albin - x+ 1 Eact 5 =	Tampilan 0 Y=5X ² -X+1 0 Y=5X ² -X+1		
Tombol yang bekerja woot 1 (MODE COMP) ###a * * * </td <td>Tampilan 0 Y=5X²-X+1 0 Y=5X²-X+1 116</td>	Tampilan 0 Y=5X ² -X+1 0 Y=5X ² -X+1 116		
Tombol yang bekerja Imose (MODE COMP) Imba S Shiha X Imba Y Apha S Shiha X Imba Y Apha S S Imba X X Imba Y Apha S Imba X Y Y	Tampilan 0 Y=5X ² -X+1 0 Y=5X ² -X+1 116 Y=5X ² -X+1		

! Ungkapan tersimpan 🔤 akan dihapus ketika Anda mulai kalkulasi yang baru, ubah ke mode lainnya, atau matikan kalkulator.

Kalkulasi Diferensial

- Tekan MODE 1 untuk masuk ke mode COMP.
- Untuk melaksanakan kalkulasi diferensial, Anda harus memasukkan ungkapan dalam bentuk:
 - shift 🚛 ungkapan diferensial 📩 a 🏠 🗸 🕖
 - Ungkapan diferensial harus berisi variabel x.
 - "a" adalah koefisien diferensial.
 - "△x" x" adalah interval perubahan x (presisi kalkulasi).
- Contoh: Untuk menentukan derivatif di titik x = 10, △x = 10⁻⁸, funtuk fungsi f(x) = sin(3x + 30).

Tombol yang bekerja	Tampilan		
MODE 1 (MODE COMP)	0		
$\int \frac{d_{T}}{dx} \sin (3) + \int \frac{d_{T}}{dx} \sin$	d/dx(sin(3X+30)⊳		
+ 3 0) hift '1			
EXP (-) 8) =	0.04534498409		

- ! Anda dapat membiarkan ∆x dalam ungkapan diferensial dan kalkulator secara otomatis akan mengganti sebuah nilai untuk ∆x.
- ! Semakin kecil nilai ∠x yang dimasukkan, semakin lama waktu kalkulasinya dan hasilnya menjadi lebih akurat; semakin besar nilai ∆x yang dimasukkan, semakin pendek waktu kalkulasinya dan hasilnya menjadi kurang akurat.
- ! Titik-tik takkontinyu dan perubahan-perubahan ekstrim pada nilai x dapat menyebabkan hasil yang takakurat atau galat.
- ! Ketika melaksanakan kalkulasi diferensial dengan fungsi trigonometrik, pilih radian (Rad) sebagai pengesetan satuan sudut.
- ! Log_ab, i~Rand, Rec (dan Pol (fungsi-fungsi tidak dapat bergabung dalam kalkulasi diferensial.

Kalkulasi Pengintegralan

- Tekan MODE 1 untuk masuk ke mode COMP.
- Untuk melaksanakan kalkulasi pengintegralan Anda diwajibkan untuk memasukkan elemen-elemen berikut:

```
🔏 ungkapan pengintegralan 📩 a 📩 b 📩 n 🕖
```

- Ungkapan pengintegralan mempunyai variabel x.
- "a" dan "b" yang menentukan rentang pengintegralan terhingga.
- "n" adalah jumlah partisi (setara dengan N = 2ⁿ).
- Kalkulasi pengintegralan didasarkan pada aturan Simpson.

Jika jumlah digit signifikan bertambah, kalkulasi pengintegralan internal perlu banyak waktu untuk penyelesaiannya. Pada beberapa kasus, bahkan setelah banyak waktu dihabiskan untuk melaksanakan suatu kalkulasi, hasil kalkulasi bisa jadi keliru. Khususnya jika digit signifikan adalah kurang dari 1, GALAT kemungkinan terjadi.

Contoh: Lakukan kalkulasi pengintegralan untuk

$$\int_{2}^{3} (5x^{4} + 3x^{2} + 2x + 1) dx, \text{ dengan } n = 4.$$

Tombol yang bekerja	Tampilan	
MODE 1	0	
$ \begin{array}{c} \int_{\mathbb{C}^{\bullet}} 5 & \stackrel{\text{Alpha}}{\longrightarrow} x & x^{\bullet} & 4 \end{array}) \\ + 3 & \stackrel{\text{Alpha}}{\longrightarrow} x^{2} & + 2 \end{array} $	∫(5X^(4)+3X ² +2X⊳	
Alpha × + 1 Shift 2	236	
Shift '3 Shift '4) =		

- ! Ketika melakukan kalkulasi pengintegralan dengan fungsi trigonometrik, pilih radian (Rad) sebagai pengesetan satuan sudut.
- ! Log_ab, i∼Rand, Rec (dan Pol (fungsi-fungsi tidak dapat bergabung dalam kalkulasi pengintegralan).

Kalkulasi Matriks

- Tekan MODE 7 untuk masuk ke mode Matriks.
- Sebelum memulai kalkulasi matriks, Anda harus membuat satu matriks atau maksimum empat matriks yang diberi nama A, B, C dan D dalam satu waktu. Dimension matriks dapat digunakan hingga 4x4.
- Hasil kalkulasi matriks secara otomatis disimpan ke dalam memori MatAns. Anda dapat menggunakan memori matriks MatAns untuk kalkulasi matriks berikutnya.

Membuat Matriks

Tekan MODE 7 untuk masuk ke mode Matriks.

■ Tekan CA Apps → untuk menggunakan aplikasi MATX; tekan

1:Dim 2:Data 3:MatA 4:MatB 5:MatC 6:MatD 7:MatAns	Tekan tombol	1:Det 3:Ide 5:Inv	2:Trn 4:Adj
--	--------------	-------------------------	----------------

ITEM MATX	DESKRIPSI
[1] Dim	Menentukan Ingatan Matriks A hingga D, dan menentukan dimensi (sampai 4 x 4)
[2] Data	Menentukan matriks A-D untuk diedit dan elemen matriks yang bersangkutan
[3] MatA to MatD	Memilih matriks A hingga D
[4] MatAns	Jawaban Kalkulasi Matriks & Simpan ke dalam MatAns
[5] Det	Menentukan fungsi Matriks A-D
[6] Trn	Data transpos dalam Matriks A-D
[7] Ide	Identitas matriks
[8] Adj	Adjoint ke Matriks
[9] Inv	Balikan Matriks

Tekan CA untuk keluar dari layar pembuatan matriks.

Mengedit Data Matriks

- Tekan CA Apps 2 (Data), kemudian tentukan matriks A, B, C atau D untuk mengedit dan indikator elemen matriks yang bersangkutan akan ditampilkan.
- Memasukkan nilai baru dan tekan = untuk mengonfirmasi edit.
- Tekan CA untuk keluar dari layar mengedit matriks.

Penambahan, Pengurangan dan Perkalian Matriks

2 3) 9 8 7 5 Contoh: MatA = 6 6 5 . MatA x MatB=? . MatB = 4 7 q 3 2

! Matriks yang akan ditambah, dikurangi atau dikalikan harus dalam ukuran yang sama. Galat terjadi jika Anda mencoba menambah, mengurangi atau mengalikan matriks yang dimensi-dimensinya berbeda satu sama lain. Contohnya, Anda tidak dapat menambah atau mengurangi matriks 2 x 3 pada matriks 2 x 2.

Mendapatkan Hasil Kali Skalar suatu Matriks

Tiap posisi dalam matriks dikalikan dengan sebuah nilai tunggal, yang menghasilkan suatu matriks dengan size yang sama.

Contoh: Kalikan Matriks C = $\begin{pmatrix} 3 & -2 \\ -1 & 5 \end{pmatrix}$ dengan 2 < Result: $\begin{pmatrix} 6 & -4 \\ -2 & 10 \end{pmatrix}$

Mendapatkan Determinan suatu Matriks (10 -5)

Contoh: Dapatkan determinan Matriks C = <Hasil: -471>

10	-5	3]
4	9	2
1	7	-3)

Tombol yang bekerja	Tampilan
CA App: 11 📎 Z	MatA:3%3
10 = (-)5 = 3 = (-)4 = 9 = 2 = 1 = 7 = (-)3 =	Mata:3X3
	Det() Ø
Apps 3) =	Det(MatA) -471

! Terjadi galat jika Anda mendapatkan determinan matriks non-kuadrat.

Membuat Transpos suatu Matriks

Contoh: Membuat transpos Matriks B = $\begin{bmatrix} 9 & 5 \\ 6 & 2 \\ 8 & 4 \end{bmatrix}$ <Hasil: $\begin{bmatrix} 9 & 6 & 8 \\ 5 & 2 & 4 \end{bmatrix}$ >

Tombol yang bekerja	Tampilan
CA ^{Apps} 1 2 👽 3	Mat8:3%2
9=5=6=2 =8=4=	MatB: 3%2
	Trn() Ø
Apps 4) =	Matans(2x3 ■5 5 8

Identitas Matriks

Contoh: Identitas Matriks D $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Tombol yang bekerja	Tampilan
	Ide(
	0
2)=	Matans:2x2
	1

Adjoin Matriks

Contoh: Adjoin Matriks A

$$\begin{array}{c} 2 & 3 \\ 4 & 5 \end{array} \right) \quad < \text{Hasil:} \left[\begin{array}{c} 5 & -3 \\ -4 & 2 \end{array} \right] >$$

Membuat Balikan suatu Matriks

Contoh: Membuat balikan Matriks C = $\begin{pmatrix} 8 & 2 \\ 3 & 6 \end{pmatrix}$ <Hasil: $\begin{pmatrix} 0.142857142 & -0.047619047 \\ -0.071428571 & 0.19047619 \end{pmatrix}$ >

Tombol yang bekerja	Tampilan
	MatC:2X2
	Ø
8=2=3=6 =	MatC:2X2
	6
CA Apps 🖌 5	Inv(
	0
Apps 5) =	Matans:2x2 [IMULE: -0.041] [-0.011 0.1904]
	1.7

Menentukan nilai Absolut suatu Matriks

Contoh: Untuk menentukan nilai absolut balik Matriks C pada contoh sebelumnya.

Tombol yang bekerja	Tampilan
CA Abs	Abs(
	0
Apps 7) =	Matans:2x2 [MUR: 0.0416] [0.0114 0.1904]
	1.7

Kalkulasi Vektor

- Tekan MODE 8 untuk masuk ke mode Vektor.
- Sebelum memulai kalkulasi Vektor. Anda harus membuat satu vektor atau lebih yang diberi nama A, B, C dan D (maksimum oven vektor satu kali.
- Hasil kalkulasi vektor secara otomatis disimpan ke dalam memori VctAns, Anda dapat menggunakan memori vektor VctAns untuk kalkulasi vektor berikutnya.

Membuat sebuah Vektor

Tekan MODE 8 untuk masuk ke mode Vektor.

|--|

T

ekan	CA	Duntuk	menggunakan	perangkat	Vektor

1:Dim	2:Data
3:VctA	4:VctB
5:VctC	6:VctD
7:VctAns	8:Dot

ITEM	DESKRIPSI
[1] Dim	Menentukan Name Vektor A sampai D, dan menentukan dimensi (2D atau 3D)
[2] Data	Menentukan Vektor A-D untuk diedit dan elemen matriks yang bersangkutan
[3] VctA to VctD	Memilih Vektor A sampai D
[4] VctAns	Jawaban Kalkulasi Vektor & Simpan ke dalam VctAns
[5] Dot	Memasukkan perintah "•" untuk mendapatkan produk titik suatu vektor Di luar VCTR MODE Apps

Tekan CA untuk keluar dari layar pembuatan matriks.

Mengedit Elemen Vektor

- Tekan CA Apps 2 (data), kemudian tentukan matriks A, B, C atau D untuk diedit dan indikator elemen vektor yang bersangkutan akan ditampilkan.
- Memasukkan nilai yang baru dan tekan unuk mengonfirmasi edit. ____
- Tekan CA untuk keluar dari layar mengedit vektor.

Penambahan dan Pengurangan Vektor

Contoh: Vektor A = (9,5), Vektor B = (7,3), Vektor A - Vektor B =?

Tombol yang bekerja	Tampilan
MODE 8 1 2	VotA:2
	Ø
8 = 5 =	VotA:2 [B
	5
	VotB:2
	ø
7 = 3 =	VctB:2 [1] []
	3
	VctA•I
	0
Apps 4 =	Votans:2
	1

! Galat terjadi jika Anda mencoba menambah atau mengurangi vektor yang dimensinya berbeda satu sama lain. Contohnya Vektor A (a,b,c) tidak dapat menambah atau mengurangi dengan Vektor B (d,e).

Mendapatkan Hasil Kali Skalar suatu Vektor

Tiap posisi dalam vektor dikalikan dengan suatu nilai tunggal, menghasilkan vektor dengan ukuran yang sama. s x VctA(a,b) = VctB(axs, bxs)

Contoh: Untuk Mengalikan Vektor C = (4,5,-6) dengan 5

Tombol yang bekerja	Tampilan
	VotC:3
	0
4 = 5 = (-) 6 =	VotC:3 [4 5 _F]
	-6
	Votans:3 I a zs -aol
	20

Hitung Hasil Kali Bagian Dalam Dua Vektor

Contoh: Hitung hasil kali bagian dalam Vektor A dan Vektor B. Dengan Vektor A = (4,5,-6) dan Vektor B = (-7,8,9).

Tombol yang bekerja	Tamp	oilan
	VctA:3	נס נ
		ø
4 = 5 = (-) 6 =	VotA:3 [4 !	-6)
		-6
	VctB:3	נס נ
		ø
(-) 7 = 8 = 9 =	VotB:3 [-1]	- -
		9
	VctA	-
		0
Apps 8	UctA•	
		Ø
Apps 4 =	VctA•VctB	-
		-42

Hitung Hasil Kali Bagian Luar Dua Vektor

Contoh: Hitung hasil kali bagian luar Vektor A dan Vektor B. Dengan Vektor A = (4,5,-6) dan Vektor B = (-7,8,9).

Tombol yang bekerja	Tan	npilar	n
	VctA:3	٥	0]
			ø
4 = 5 = (-) 6 =	VctA:3 [4	5	-61
			-6
	VotB:3	٥	۵۱
			ø
(-) 7 = 8 = 9 =	VotB:3 [-1	8	9)
			9
	UctA×4	-	-
			0
	VotAns:3	6	67]
			93

! Galat terjadi jika Anda mencoba mendapatkan hasil kali bagian dalam atau bagian luar dua vektor yang dimensinya berbeda satu sama lain.

Menentukan nilai Absolut Vektor

Contoh 1: Untuk menentukan nilai absolut Vektor C. Dengan Vektor C = (4,5,-6) dan sudah dibuat dalam kalkulator.

Tombol yang bekerja	Tampilan
	VotA:3 • • • • • •
	0
4=5=(-)6=	VotA:3 [4 5 _F]
	-6
CA Abs 5) =	Abs(VctC)
	8.774964387

Contoh 2: Basis pada n Vektor A=(-1, 0, 1) dan Vektor B=(1, 2, 0), menentukan ukuran sudut (satuan sudut: Deg) dan ukuran 1 vektor tegak lurus A dan B.

$$\cos \theta = \frac{(A \cdot B)}{|A||B|}$$
, sedangkan $\theta = \cos \frac{-1}{|A||B|}$
Ukuran 1 vektor tegak lurus A dan B= $\frac{A \times B}{|A \times B|}$

< Hasil: VctA × VctB |VctA × VctB| =(0.6666666666, -0.333333333, 0.6666666666) >

Tombol yang bekerja	Tampilan
	VotA:3
	0
	VotA:3 [-1 0
	1
	VotB:3
	0
1=2=0=	VotB:3 [] 2
	0
CA Apps 3 Apps 8 Apps 4	VctA•VctB
	0
÷ (Abs Apps 3) ×	UctA•UctB÷(Abs(⊳
Abs 4) =	-0.316227766
Shift cos ⁻¹ Ans) = Apps 3 X Apps 4 = 3	VotAns:3
	-2
$ \begin{array}{c} \text{Abs} \stackrel{\text{Apps}}{\longrightarrow} 7) = \stackrel{\text{Apps}}{\longrightarrow} 7 \\ \hline \end{array} $	VotAns:3 国际研究 0.9999 -0.666]
	-2,3

Kalkulasi Table Fungsi (x,y)

Masukkan fungsi f(x) untuk membangkitkan tabel fungsi untuk x & f(x).

- Langkah-langkah untuk membangkitkan Tabel Bilangan
 - 1. Tekan More 6 untuk masuk ke kalkulasi fungsi Tabel.
 - 2. Layar Input Fungsi
 - Masukkan fungsi dengan variabel X (Alpha X) untuk membangkitkan Hasil Tabel Fungsi.
 - Semua variabel lainnya (A, B, C, D, Y) dan memori independen (M) berfungsi sebagai nilai tersebut.
 - Fungsi Pol, Rec, Q...r, S, d/dx tidak dapat digunakan di layar Input Fungsi.
 - · Kalkulasi Tabel Fungsi akan mengubah variabel-X.
 - 3. Masukkan informasi start, end & step
 - Masukkan nilai, tekan unuk mengonfirmasi di layar-layar berikut
 - Ungkapan input dan nilai hasil tampilan di layar-layar berikut adalah dalam status mode Baris
 - Ada maksimum 30 x-nilai untuk membangkitkan tabel fungsi.
 "Insufficient Error" akan diperlihatkan jika Anda memasukkan kombinasi nilai start, end, step adalah lebih dari 30 x-nilai.

Layar tampilan	Anda mesti memasukkan:-
Start?	Memasukkan batas bawah limit X (Asal =1).
End?	Memasukkan batas atas X (Asal = 5). *Nilai End harus lebih besar dari nilai start.
Step?	Masukkan step inkremen (Asal =1).

- Di layar Hasil Tabel Fungsi, Anda tidak dapat mengedit isinya, dan tekan CA untuk kembali ke layar Input Fungsi.
- **Contoh:** $f(x) = x^3 + 3x^2 2x$ untuk membangkitkan tabel fungsi untuk rentang $1 \le x \le 5$, yang ditambahkan dalam langkah 1.

Tombol yang bekerja	Tampilan
MODE 6	f(x)=
$\begin{array}{c c} Alpha & X & Shift & X' & + & 3 \\ \hline & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & $	f(x)= X ³ +3X ² -2X
$\odot \odot \odot \odot$	8 F(X) 8 40 104 5 190 5 5

Mengganti Baterai

Jika karakter tampilan redup atau memperlihatkan pesan berikut pada layar, matikan kalkulator dan ganti baterai litium segera.

Low Battery

Ganti baterai litium dengan menggunakan prosedur berikut,

- 1. Tekan Shift OFF untuk mematikan kalkulator.
- 2. Lepaskan sekrup yang mengencangkan tutup baterai.
- 3. Lepaskan tutup baterai.
- Lepaskan baterai lama dengan bolpoin atau benda tajam serupa.
- 5. Masukkan baterai yang baru dengan sisi positif "+"menghadap ke atas.
- Awas: Risiko meledak jika baterai diganti dengan jenis baterai yang berbeda. Buang baterai sesuai dengan instruksi.
- Gangguan elektromagnetik atau muatan elektrostatik dapat menyebabkan tampilan terganggu atau isi memori hilang atau berubah. Apabila terjadi, tekan (∞), [™] ([™] 3) = (△) untuk menghidupkan kembali kalkulator.

Saran dan Peringatan

- Kalkulator ini berisi komponen-komponen presisi seperti LSI chip dan tidak boleh digunakan di tempat yang mengalami perubahan suhu yang cepat, kotoran kelembapan atau debu yang berlebihan, atau terkena sinar matahari langsung.
- Panel tampilan kristal cair terbuat dari kaca dan tidak boleh terkena tekanan yang berlebihan.
- Ketika membersihkan kalkulator, jangan menggunakan kain lembap atau cairan yang mudah menguap seperti tinner cat. Gunakan hanya kain lembut, kering.
- Pada kondisi bagaimana pun jangan membongkar kalkulator. Jika Anda percaya bahwa kalkulator tidak berfungsi dengan benar, bawalah atau kirimkan kalkulator dengan jaminan ke kantor perwakilan servis Canon.
- Jangan membuang kalkulator dengan cara yang keliru seperti membakar; karena dapat menimbulkan risiko cedera pribadi atau kerusakan.

Anda disarankan untuk membuang produk ini sesuai dengan perundang-undangan di negara Anda.

 Ganti baterai sekali tiap dua tahun meskipun tidak sering digunakan.

Hati-hati dengan Baterai!

- Jauhkan Baterai dari jangkauan anak-anak. Jika baterai tertelan, hubungi dokter segera.
- Penyalahgunaan baterai dapat menyebabkan kebocoran, ledakan, kerusakan atau cedera pribadi.
- Jangan mengisi atau membongkar baterai karena dapat menyebabkan hubung singkat.
- Jangan sampai membawa baterai ke tempat bersuhu tinggi, panas langsung, atau membuat dengan cara dibakar.
- Jangan biarkan baterai mati di dalam kalkulator karena baterai mati dapat bocor dan menyebabkan kerusakan pada kalkulator.
- Terus menerus menggunakan kalkulator dalam kondisi baterai rendah dapat menyebabkan operasi terganggu atau memori yang tersimpan dapat rusak atau hilang seluruhnya. Simpan catatan tertulis data penting setiap saat; dan ganti baterai sesegera mungkin.

Spesifikasi

Catu Day	/a	: Surya sel dan baterai Litium Tunggal
-		(CR2032 x 1)
Konsum	si Daya	: DC 3.0V / 0.3mW
Umur Ba	terai	: Sekitar 4 tahun
		(Berdasarkan operasi 1 jam per hari)
Mati otor	natis	: Sekitar 7 menit
Suhu Op	erasi	: 0° ~ 40°C
Ukuran:	171 (L) >	< 86 (W) × 17.3 (H) mm (dengan tutup) /
	168 (L) >	< 80 (W) × 13.15 (H) mm (tanpa tutup)
Berat	: 120 g (dengan tutup) / 88 g (tanpa co tutup ver)

*Spesifikasi dapat berubah tanpa pemberitahuan.

CANON ELECTRONIC BUSINESS MACHINES (H.K.) CO., LTD.

17/F., Tower One, Ever Gain Plaza, 82-100 Container Port Road, Kwai Chung, New Territories, Hong Kong

CANON MARKETING (MALAYSIA) SDN BHD.

Block D, Peremba Square, Saujana Resort, Section U2, 40150 Shah Alam, Selangor Darul Ehsan, Malaysia

© CANON ELECTRONIC BUSINESS MACHINES (H.K.) CO., LTD. 2012 E-IIN-012 DICETAK DI CINA